scholarly journals Analytical Investigation of Periodic Solutions for a Coupled Oscillator With Dry Friction

Author(s):  
Madeleine Pascal

In this paper, we present an analytical method to investigate the behavior of a two degrees of freedom oscillator excited by dry friction. The system consists of two masses connected by linear springs. These two masses are in contact with a driving belt moving at a constant velocity. The contact forces between the masses and the belt are obtained from Coulomb’s friction laws. A set of periodic solutions involving a global sticking phase followed by several other phases where one or both masses are slipping, are found in close form. Stability conditions related to these solutions are obtained.

Author(s):  
Madeleine Pascal

In this paper, we present an analytical method to investigate the behavior of a two-degree-of-freedom oscillator excited by dry friction. The system consists of two masses connected by linear springs. These two masses are in contact with a driving belt moving at a constant velocity. The contact forces between the masses and the belt are obtained assuming Coulomb’s friction law. Two families of periodic motions are found in closed form. The first one includes stick-slip oscillations with two switches per period, the second one is also composed of stick-slip motion, but includes three switches per period. In both cases, the initial conditions and the time duration of each kind of motions (stick or slip phases) are obtained in analytical form.


Author(s):  
Madeleine Pascal

We investigate the dynamics of a two degrees-of-freedom oscillator excited by dry friction. The system consists of two masses connected by linear springs and in contact with a belt moving at a constant velocity. The contact forces between the masses and the belt are given by Coulomb's laws. Several periodic orbits including slip and stick phases are obtained. In particular, the existence of periodic orbits involving a part where one of the masses moves at a higher speed than the belt is proved.


2011 ◽  
Vol 21 (10) ◽  
pp. 2853-2860 ◽  
Author(s):  
MADELEINE PASCAL

Two examples of nonsmooth systems are considered. The first one is a two degrees of freedom oscillator in the presence of a stop. A discontinuity appears when the system position reaches a critical value. The second example consists of coupled oscillators excited by dry friction. In this case, the discontinuity occurs when the system's velocities take a critical value. For both examples, the dynamical system can be partitioned into different configurations limited by a set of boundaries. Within each configuration, the dynamical model is linear and the close form solution is known. Periodic orbits, including several transitions between the various configurations of the system, are found in analytical form. The stability of these orbits is investigated by using the Poincaré map modeling.


Author(s):  
Christophe Cochet ◽  
Ronald W. Yeung

The wave-energy absorber being developed at UC Berkeley is modeled as a moored compound cylinder, with an outer cylinder sliding along a tension-tethered inner cylinder. With rigid-body dynamics, it is first shown that the surge and pitch degrees of freedom are decoupled from the heave motion. The heaving motion of the outer cylinder is analyzed and its geometric proportions (radii and drafts ratios) are optimized for wave-energy extraction. Earlier works of Yeung [1] and Chau and Yeung [2,3] are used in the present heave-motion study. The coupled surge-pitch motion can be solved and can provide the contact forces between the cylinders. The concept of capture width is used to characterize the energy extraction: its maximization leads to optimal energy extraction. The methodology presented provides the optimal geometry in terms of non-dimensional proportions of the device. It is found that a smaller radius and deeper draft for the outer cylinder will lead to a larger capture width and larger resulting motion.


Author(s):  
SD Yu ◽  
BC Wen

This article presents a simple procedure for predicting time-domain vibrational behaviors of a multiple degrees of freedom mechanical system with dry friction. The system equations of motion are discretized by means of the implicit Bozzak–Newmark integration scheme. At each time step, the discontinuous frictional force problem involving both the equality and inequality constraints is successfully reduced to a quadratic mathematical problem or the linear complementary problem with the introduction of non-negative and complementary variable pairs (supremum velocities and slack forces). The so-obtained complementary equations in the complementary pairs can be solved efficiently using the Lemke algorithm. Results for several single degree of freedom and multiple degrees of freedom problems with one-dimensional frictional constraints and the classical Coulomb frictional model are obtained using the proposed procedure and compared with those obtained using other approaches. The proposed procedure is found to be accurate, efficient, and robust in solving non-smooth vibration problems of multiple degrees of freedom systems with dry friction. The proposed procedure can also be applied to systems with two-dimensional frictional constraints and more sophisticated frictional models.


2002 ◽  
Vol 11 (02) ◽  
pp. 83-104 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CESAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG ◽  
J. A. DE FREITAS PACHECO

Thermodynamical properties of nuclear matter are studied in the framework of an effective many-body field theory at finite temperature, considering the Sommerfeld approximation. We perform the calculations by using the nonlinear Boguta and Bodmer model, extended by the inclusion of the fundamental baryon octet and leptonic degrees of freedom. Trapped neutrinos are also included in order to describe protoneutron star properties through the integration of the Tolman–Oppenheimer–Volkoff equations, from which we obtain, beyond the standard relations for the masses and radii of protoneutron stars as functions of the central density, new results of these quantities as functions of temperature. Our predictions include: the determination of an absolute value for the limiting mass of protoneutron stars; new structural aspects on the nuclear matter phase transition via the behavior of the specific heat and, through the inclusion of quark degrees of freedom, the properties of a hadron-quark phase transition and hybrid protoneutron stars


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Author(s):  
Loi¨c Salles ◽  
Laurent Blanc ◽  
Fabrice Thouverez ◽  
Alexander M. Gouskov ◽  
Pierrick Jean

Contact interfaces with dry friction are frequently used in turbomachinery. Dry friction damping produced by the sliding surfaces of these interfaces reduces the amplitude of bladed-disk vibration. The relative displacements at these interfaces lead to fretting-wear which reduces the average life expectancy of the structure. Frequency response functions are calculated numerically by using the multi-Harmonic Balance Method (mHBM). The Dynamic Lagrangian Frequency-Time method is used to calculate contact forces in the frequency domain. A new strategy for solving non-linear systems based on dual time stepping is applied. This method is faster than using Newton solvers. It was used successfully for solving Nonlinear CFD equations in the frequency domain. This new approach allows identifying the steady state of worn systems by integrating wear rate equations a on dual time scale. The dual time equations are integrated by an implicit scheme. Of the different orders tested, the first order scheme provided the best results.


2003 ◽  
Vol 125 (1) ◽  
pp. 81-91 ◽  
Author(s):  
M. Fayet

First, a procedure is presented in order to build the space of statically admissible wrenches. The matrix which generates them is obtained in an intrinsic way. It uses intersection of spaces for the edges (of the associated graph) and the new operation of “triangular projection” for the vertices. From this matrix, the choice of any set of indeterminable contact forces is achieved via a very simple test. This matrix allows to determine also all the possible degrees of freedom to add to the over-constrained mechanism in order to transform it into a non over-constrained one. Wrench-twist duality arises clearly in this last procedure.


Sign in / Sign up

Export Citation Format

Share Document