nonsmooth dynamical systems
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 2)

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lijun Pei ◽  
Hongyang Zhang ◽  
Yueli Chen

In this paper, the nonsmooth compound transmission control protocol (TCP) with the gentle random early detection (GRED) system with the state-dependent round-trip delay is investigated in detail. Uniqueness of the positive equilibrium is proved firstly. Then, the closed approximate periodic solutions in this state-dependent delayed nonsmooth compound TCP with the GRED model are obtained by employing the harmonic balance and alternating frequency/time domain (HB-AFT) method. Then, we compare the results generated by numerical simulations with those of the closed approximate expressions obtained by HB-AFT. It indicates that HB-AFT is simple, correct, and powerful for state-dependent delayed nonsmooth dynamical systems. Finally, we find the complicated dynamic: chaos. It is a grazing chaos with a hybrid property, i.e., where usually w oscillates at a very low frequency and q oscillates at a very high frequency. And, the route to chaos is a very rare route, i.e., the instantaneous and local transition of stable equilibrium to chaos. So, to the end of stability and good performance, we should adjust the parameters carefully to avoid the periodic and chaotic oscillations.


Meccanica ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 2505-2521 ◽  
Author(s):  
Yang Liu ◽  
Joseph Páez Chávez ◽  
Bingyong Guo ◽  
Rauf Birler

AbstractIn this paper we carry out an in-depth experimental and numerical investigation of a vibro-impact rig with a two-sided constraint and an external excitation given by a rectangular waveform. The rig, presenting forward and backward drifts, consists of an inner vibrating shaft intermittently impacting with its holding frame. Our interests focus on the multistability and the bifurcation structure observed in the system under two different contacting surfaces. For this purpose, we propose a mathematical model describing the rig dynamics and perform a detailed bifurcation analysis via path-following methods for nonsmooth dynamical systems, using the continuation platform COCO. Our study shows that multistability is produced by the interplay between two fold bifurcations, which give rise to hysteresis in the system. The investigation also reveals the presence of period-doubling bifurcations of limit cycles, which in turn are responsible for the creation of period-2 solutions for which the rig reverses its direction of progression. Furthermore, our study considers a two-parameter bifurcation analysis focusing on directional control, using the period of external excitation and the duty cycle of the rectangular waveform as the main control parameters.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rui Qu ◽  
Shaolong Li

The main purpose of this paper is to investigate the mechanism of sliding phenomenon in Filippov (nonsmooth) dynamical systems by attractor analysis and vector analysis. A corresponding simple model based on Chua’s circuit with periodic excitation was introduced as an example. The attractor analysis proposed in our previous work is used to discuss the complicated oscillations of the Filippov system. However, it failed to perfectly explain the sliding phenomena and establish an analytical method of constant voltage control. Therefore, the geometric structure and analytic conditions of sliding bifurcations in the general n-dimensional piecewise smooth system are discussed in detail by vector structure analysis. The prospects of practical application of this method are also discussed in the end.


2018 ◽  
Vol 98 (5) ◽  
Author(s):  
Ru-Hai Du ◽  
Shi-Xian Qu ◽  
Ying-Cheng Lai

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Minjia He ◽  
Shuo Li ◽  
Jinjin Wang ◽  
Zhenjun Lin ◽  
Shuang Liu

We investigate a relative rotation system with backlash and dry friction. Firstly, the corresponding nonsmooth characters are discussed by the differential inclusion theory, and the analytic conditions for stick and nonstick motions are developed to understand the motion switching mechanism. Based on such analytic conditions of motion switching, the influence of the maximal static friction torque and the driving torque on the stick motion is studied. Moreover, the sliding time bifurcation diagrams, duty cycle figures, time history diagrams, and the K-function time history diagram are also presented, which confirm the analytic results. The methodology presented in this paper can be applied to predictions of motions in nonsmooth dynamical systems.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Song-Mei Huan

We mainly investigate the existence, stability and number of invariant cones in 3-dim homogeneous piecewise linear systems with two zones separated by a plane containing the 1-dim invariant manifold of each linear subsystem. By transforming the system into a proper form with the 1-dim invariant manifolds on the separation plane either coincident or perpendicular, we obtain complete results on the existence, stability and number of invariant cones and show that the maximum number of invariant cones is two. The explicit parameter relations obtained here contribute to understanding and investigating bifurcation phenomena occurring in nonsmooth dynamical systems.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650068 ◽  
Author(s):  
Mike R. Jeffrey

We investigate the role of hidden terms at switching surfaces in piecewise smooth vector fields. Hidden terms are zero everywhere except at the switching surfaces, but appear when blowing up the switching surface into a switching layer. When discontinuous systems do surprising things, we can often make sense of them by extending our intuition for smooth system to the switching layer. We illustrate the principle here with a few attractors that are hidden inside the switching layer, being evident in the flow, despite not being directly evident in the vector field outside the switching surface. These can occur either at a single switch (where we will introduce hidden terms somewhat artificially to demonstrate the principle), or at the intersection of multiple switches (where hidden terms arise inescapably). A more subtle role of hidden terms is in bifurcations, and we revisit some simple cases from previous literature here, showing that they exhibit degeneracies inside the switching layer, and that the degeneracies can be broken using hidden terms. We illustrate the principle in systems with one or two switches.


Sign in / Sign up

Export Citation Format

Share Document