Dynamics of Non-Ideal Topology Transitions in Multibody Mechanical Systems

Author(s):  
Josep M. Font-Llagunes ◽  
Jo´zsef Ko¨vecses

Mechanical systems with time-varying topology appear frequently in various applications. In this paper, topology changes that can be modeled by means of bilateral impulsive constraints are analyzed. We present a concept to project kinematic and kinetic quantities to two mutually orthogonal subspaces of the tangent space of the mechanical system. This can be used to obtain decoupled formulations of the kinetic energy and the dynamic equations at topology transition. It will be shown that the configuration of the multibody system at topology change significantly influences the projection of non-ideal forces to both subspaces. Experimental analysis, using a dual-pantograph robotic prototype interacting with a stiff environment, is presented to illustrate the material.

Author(s):  
József Kövecses ◽  
Josep M. Font-Llagunes

Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, we discuss a concept that can offer possibilities to gain insight and analyze topology transitions. This approach relies on the use of impulsive constraints and a formulation that makes it possible to decouple the dynamics at topology change. A key point is an eigenvalue problem that characterizes several aspects of energy and momentum transfer at the discontinuous topology transition.


2014 ◽  
Vol 524 ◽  
pp. 012163 ◽  
Author(s):  
L E M Lignarolo ◽  
D Ragni ◽  
C J Simão Ferreira ◽  
G J W van Bussel

Author(s):  
F. Zhang ◽  
B. J. Gilmore ◽  
A. Sinha

Abstract Tolerance allocation standards do not exist for mechanical systems whose response are time varying and are subjected to discontinuous forcing functions. Previous approaches based on optimization and numerical integration of the dynamic equations of motion encounter difficulty with determining sensitivities around the force discontinuity. The Alternating Frequency/Time approach is applied here to capture the effect of the discontinuity. The effective link length model is used to model the system and to account for the uncertainties in the link length, radial clearance and pin location. Since the effective link length model is applied, the equations of motion for the nominal system can be applied for the entire analysis. Optimization procedure is applied to the problem where the objective is to minimize the manufacturing costs and satisfy the constraints imposed on mechanical errors and design variables. Examples of tolerance allocation are presented for a single cylinder internal combustion engine.


Author(s):  
Yu Wang

Abstract A model is developed for analyzing mechanical systems with a pair of bodies with topological changes in their kinematic constraints. It is built upon the concept of Poincaré map rather than following the traditional methods of differential equations. The model provides a set of well-defined and naturally-discrete equations of motion and is capable of giving physical insights of dynamic characteristics of deadbeat convergence of multiple collisions and periodic or chaotic responses. The development of dynamic model and a local stability analysis are presented in Part 1, and the global analysis and numerical simulation are discussed in Part 2.


2019 ◽  
Vol 29 (09) ◽  
pp. 1930024
Author(s):  
Sergej Čelikovský ◽  
Volodymyr Lynnyk

A detailed mathematical analysis of the two-dimensional hybrid model for the lateral dynamics of walking-like mechanical systems (the so-called hybrid inverted pendulum) is presented in this article. The chaotic behavior, when being externally harmonically perturbed, is demonstrated. Two rather exceptional features are analyzed. Firstly, the unperturbed undamped hybrid inverted pendulum behaves inside a certain stability region periodically and its respective frequencies range from zero (close to the boundary of that stability region) to infinity (close to its double support equilibrium). Secondly, the constant lateral forcing less than a certain threshold does not affect the periodic behavior of the hybrid inverted pendulum and preserves its equilibrium at the origin. The latter is due to the hybrid nature of the equilibrium at the origin, which exists only in the Filippov sense. It is actually a trivial example of the so-called pseudo-equilibrium [Kuznetsov et al., 2003]. Nevertheless, such an observation holds only for constant external forcing and even arbitrary small time-varying external forcing may destabilize the origin. As a matter of fact, one can observe many, possibly even infinitely many, distinct chaotic attractors for a single system when the forcing amplitude does not exceed the mentioned threshold. Moreover, some general properties of the hybrid inverted pendulum are characterized through its topological equivalence to the classical pendulum. Extensive numerical experiments demonstrate the chaotic behavior of the harmonically perturbed hybrid inverted pendulum.


Author(s):  
Andrew J. Sinclair ◽  
John E. Hurtado

The Cayley transform and the Cayley–transform kinematic relationships are an important and fascinating set of results that have relevance in N –dimensional orientations and rotations. In this paper these results are used in two significant ways. First, they are used in a new derivation of the matrix form of the generalized Euler equations of motion for N –dimensional rigid bodies. Second, they are used to intimately relate the motion of general mechanical systems to the motion of higher–dimensional rigid bodies. This approach can be used to describe an enormous variety of systems, one example being the representation of general motion of an N –dimensional body as pure rotations of an ( N + 1)–dimensional body.


2013 ◽  
Vol 275-277 ◽  
pp. 930-935
Author(s):  
Zhe Rao ◽  
Chun Yan Zhou

The present paper is focused on the torsional instabilities of the intermediate shaft in a two stage gear system. A theoretical model is established taking account in the torsional flexibility of the intermediate shaft and the meshing time-varying stiffness of the gears. Multiple scale method is applied to analysis the instability areas of the gear system for which the generalized modal coordinate is adopted. The result is certificated by numerical integrals of the dynamic equations by Runge-Kutta Method.


Sign in / Sign up

Export Citation Format

Share Document