Material Property Characterization of Costal Cartilage Using AFM Indentation

Author(s):  
S. Tripathy ◽  
E. J. Berger

Costal cartilage is one of the load bearing tissues of the rib cage. Literature on the material characterization of the costal cartilage is limited. Atomic force microscopy has been extremely successful in characterizing the elastic properties of articular cartilage, but no studies have been published on costal cartilage. In this study AFM indentations on human costal cartilage were performed and compared with macro scale indentation data. Spherical beaded tips of three sizes were used for the AFM indentations. The Hertz contact model for spherical indenter was used to analyze the data and obtain the Young’s modulus. The costal cartilage was found to be almost linearly elastic till 600 nm of indentation depth. It was also found that the modulus values decreased with the distance from the junction. The modulus values from macro indentations were found to be 2-fold larger than the AFM indentation modulus.

Micron ◽  
2013 ◽  
Vol 44 ◽  
pp. 483-487 ◽  
Author(s):  
M. Stacey ◽  
D. Dutta ◽  
W. Cao ◽  
A. Asmar ◽  
H. Elsayed-Ali ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1357 ◽  
Author(s):  
Peyman Nikaeen ◽  
Dilip Depan ◽  
Ahmed Khattab

Surface mechanical properties of low-density polyethylene (LDPE) reinforced by carbon nanofibers (CNFs) up to 3% weight load were investigated using nanoindentation (NI). Surface preparation of the nanocomposite was thoroughly investigated and atomic force microscopy (AFM) was used to analyze the surface roughness of the polished surfaces. The dispersion of nanofillers in the LDPE matrix was examined using scanning electron microscopy (SEM). The effect of various penetration loads on the results and scattering of the data points was discussed. It was found by NI results that the addition of 3% weight CNF increased the elastic modulus of LDPE by 59% and its hardness up to 12%. The nano/micro-scale results were compared with macro-scale results obtained by the conventional tensile test as well as the theoretical results calculated by the Halpin-Tsai (HT) model. It was found that the modulus calculated by nanoindentation was twice that obtained by the conventional tensile test which was shown to be in excellent agreement with the HT model. Experimental results indicated that the addition of CNF to LDPE reduced its wear resistance property by reducing the hardness to modulus ratio. SEM micrographs of the semicrystalline microstructure of the CNF/LDPE nanocomposite along with the calculated NI imprints volume were examined to elaborate on how increasing the penetration depth resulted in a reduction of the coefficient of variation of the NI data/more statistically reliable data.


2013 ◽  
Vol 19 (6) ◽  
pp. 1632-1644 ◽  
Author(s):  
Catarina Pereira ◽  
Tito Busani ◽  
Luis C. Branco ◽  
Ineke Joosten ◽  
Irina Crina Anca Sandu

AbstractThis work establishes a multiscale and multitechnique nondestructive approach as valid methodology for monitoring surface properties and evaluating the effectiveness of enzymatic removal of varnishes from paintings/polychrome artefacts.Mock-up samples (documented reconstructions of oil, tempera, and gilded layers on canvas and wooden supports) were covered with different proteinaceous varnishes (egg white, animal and fish glue, casein) and then characterized before and after the removal of these coatings with enzyme-based solutions. The varnish was cleaned in several steps (two dry swabs and two wet swabs) with a clearance step for removing the residues from proteinaceous varnish or from enzyme solution.Microscopy [stereomicroscopy (SM), optical microscopy (OM), atomic force microscopy (AFM), and scanning electron microscopy (SEM)] and colorimetric (CIE L*a*b* system) techniques were used for characterization of the reconstruction surfaces at different scales (macro-scale by SM and OM; micro-scale by SEM and nano-scale by AFM). These techniques were also used to monitor the cleaning treatment.Although results presented in this work were obtained for the specific treatment of enzyme removal, the methodology could be extended to other types of materials and cleaning. Further experiments on real works of art are needed for a complete validation of the methodology.


Author(s):  
Rajarshi Roy ◽  
Wenjin Chen ◽  
Lei Cong ◽  
Lauri A. Goodell ◽  
David J. Foran ◽  
...  

The mechanical properties of biomaterials have long been a subject of interest for researchers due to their potential in predicting biologically relevant questions, like proliferation of cancer in tissue. A popular technique of estimating material properties of biomaterials is the AFM, which consists of a probe that indents the material of interest. However, region localization for AFM indentation is challenging, especially when probing large sections of the tissue. Furthermore, identifying the point of contact between AFM tip and the specimen on the force-displacement curve involves uncertainties that are difficult to predict. In this work, we try to address these two issues. We use a vision-guided positioning system to achieve region localization, and we use a resistance based-electrical circuit to identify the point of contact between AFM tip and the specimen.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Juntian Qu ◽  
Xinyu Liu

Functional nanomaterials possess exceptional mechanical, electrical, and optical properties which have significantly benefited their diverse applications to a variety of scientific and engineering problems. In order to fully understand their characteristics and further guide their synthesis and device application, the multiphysical properties of these nanomaterials need to be characterized accurately and efficiently. Among various experimental tools for nanomaterial characterization, scanning electron microscopy- (SEM-) based platforms provide merits of high imaging resolution, accuracy and stability, well-controlled testing conditions, and the compatibility with other high-resolution material characterization techniques (e.g., atomic force microscopy), thus, various SEM-enabled techniques have been well developed for characterizing the multiphysical properties of nanomaterials. In this review, we summarize existing SEM-based platforms for nanomaterial multiphysical (mechanical, electrical, and electromechanical) in situ characterization, outline critical experimental challenges for nanomaterial optical characterization in SEM, and discuss potential demands of the SEM-based platforms to characterizing multiphysical properties of the nanomaterials.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Author(s):  
Willian Silva Conceição ◽  
Ştefan Ţălu ◽  
Robert Saraiva Matos ◽  
Glenda Quaresma Ramos ◽  
Fidel Guereiro Zayas ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2013 ◽  
Vol 22 ◽  
pp. 85-93
Author(s):  
Shuang Yi Liu ◽  
Min Min Tang ◽  
Ai Kah Soh ◽  
Liang Hong

In-situ characterization of the mechanical behavior of geckos spatula has been carried out in detail using multi-mode AFM system. Combining successful application of a novel AFM mode, i.e. Harmonix microscopy, the more detail elastic properties of spatula is brought to light. The results obtained show the variation of the mechanical properties on the hierarchical level of a seta, even for the different locations, pad and stalk of the spatula. A model, which has been validated using the existing experimental data and phenomena as well as theoretical predictions for geckos adhesion, crawling and self-cleaning of spatulae, is proposed in this paper. Through contrast of adhesive and craw ability of the gecko on the surfaces with different surface roughness, and measurement of the surface adhesive behaviors of Teflon, the most effective adhesion of the gecko is more dependent on the intrinsic properties of the surface which is adhered.


Sign in / Sign up

Export Citation Format

Share Document