Free Vibration Analysis of Rotating Tapered Bresse-Rayleigh Beams Using the Differential Transformation Method

Author(s):  
Dominic R. Jackson ◽  
S. Olutunde Oyadiji

The free vibration characteristics of a rotating tapered Rayleigh beam is analysed in this study. First, the strain-displacement relationship for the rotating beam is formulated and used to derive the kinetic and strain energies in explicit analytical form. Second, Hamilton’s variational principle is used to derive the governing differential equation of motion and the associated boundary conditions. Third, the Differential Transformation Method (DTM) is applied to reduce the governing differential equations of motion and the boundary conditions to a set of algebraic equations from which the frequency equation is derived. Next, a numerical algorithm implemented in the software package Mathematica is used to compute the natural frequencies of vibration for a few paired combinations of clamped, pinned and free end conditions of the beam. Also, the variation of the natural frequencies of vibration with respect to variations in the rotational speed, hub radius, taper ratio and the slenderness ratio is studied. The results obtained from the Bresse-Rayleigh theory are compared with results obtained from the Bernoulli-Euler and Timoshenko theories to demonstrate the accuracy and relevance of their application.

Author(s):  
Juan Sebastián Carvajal-Muñoz ◽  
Carlos Alberto Vega-Posada ◽  
Julio César Saldarriaga-Molina

This paper describes an analytical approach to conduct an analysis of beam-column elements with generalized end-boundary conditions on a homogeneous or non-homogeneous Pasternak elastic foundation. The mathematical formulation utilized herein is that presented by the senior author in a recent work. The differential equation (DE) governing the behavior of the beam-column element is solved using the differential transformation method (DTM). The DTM offers practical advantages over other conventional approaches when solving the proposed structural model. The proposed formulation provides the flexibility to account for i) combined lateral and axial load at the ends of the element, ii) homogeneous or non-homogeneous soil, iii) Pasternak elastic foundation, and iv) an external arbitrary transverse load acting on the element. The effects of various slenderness ratios, pile-soil stiffness ratios, and classical and semirigid boundary conditions can be easily studied with the proposed formulation. Examples are presented to validate the accuracy of the model and its applicability over a wide range of analyses.


2013 ◽  
Vol 284-287 ◽  
pp. 1966-1970
Author(s):  
Chin Chia Liu ◽  
Ming Fei Chen

The aim of this study is to derive the governing equation of an electrostatically actuated micro system by use of the Hamilton principle, and then the natural frequencies of a micro fixed-fixed beam are derived as the solutions to a boundary value problem with prescribed boundary conditions through the differential transformation method (D.T.M.). The differential transformation employed is a transformed function based on the Taylor series that is effective in solving nonlinear problems with fast convergence. The numerical results of the calculated natural frequencies are compared with the analytical data and were found to be in good agreement. Hence, the differential transformation method is one of the most efficient methods of simulating the electrostatic behavior of a micro-structure system, and it has a great potential for use in the analysis of the micro fixed-fixed beam.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

In this paper, a semi analytical-numerical technique called differential transform method (DTM) is applied to investigate free vibration of nanobeams based on non-local Euler–Bernoulli beam theory. The essential steps of the DTM application include transforming the governing equations of motion into algebraic equations, solving the transformed equations and then applying a process of inverse transformation to obtain accurate mode frequency. All the steps of the DTM are very straightforward, and the application of the DTM to both the equations of motion and the boundary conditions seems to be very involved computationally. Besides all these, the analysis of the convergence of the results shows that DTM solutions converge fast. In this paper, a detailed investigation has been reported and MATLAB code has been developed to analyze the numerical results for different scaling parameters as well as for four types of boundary conditions. Present results are compared with other available results and are found to be in good agreement.


2001 ◽  
Vol 01 (01) ◽  
pp. 125-144 ◽  
Author(s):  
HUAN ZENG ◽  
CHARLES W. BERT

Stiffened skew plates find application in various engineering fields. The free vibration characteristics of such plates have been studied by various methods. An orthogonally stiffened skew plate is a skew plate with stiffeners running orthogonal to two opposite edges. To the best knowledge of the present investigators, no previous work has been done for free vibration characteristics of skew plates of such stiffening geometry. The present work studies the free vibration of such plates. The pb-2 Rayleigh–Ritz method was employed due to its accuracy and computational efficiency. The conventional finite element method was also used as a comparative check. A convergence study was first performed for various boundary conditions. Then the vibration of orthogonally stiffened skew plates with different boundary conditions was studied. Close agreement was found between these two methods. The variations of natural frequencies with different parameters, including skew angle ϕ, edge ratio b/a, and height-thickness ratio f/h, were investigated for three types of boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document