An Early Modeling and Simulation Approach for Fast Evaluation of Early Design Concepts

Author(s):  
Eric Coatanéa ◽  
Sarayut Nonsiri ◽  
Mohamed Bakhouya ◽  
Panu Kiviluoma ◽  
Olof Calonius

Being able to quickly model and simulate very early design solutions in the design process is an important practical issue for engineering designers. Early design is characterized by the small amount of quantitative data available at the beginning of the development process. The task is becoming cumbersome for engineers when in addition they do not possess extensive knowledge of the domain of interest. In this context, traditional modeling and simulation methods are disqualified for supporting the early engineering design choices because they require too much details and precise quantitative information. The approach considered in this article to supply the deficiency of traditional modeling methods is combining three domains of physics and mathematics: qualitative physics, dimensional analysis and graph-based representation. The present article develops the general framework which is emerging from this combination. The authors develop the framework to the fast modeling and simulation of an air bearing. The structure of the article is the following, first the basis of the modeling and simulation method are briefly presented. In a second step the entire approach is developed on the case of an air bearing concept with the goal of making the presentation as pedagogical as possible. A causal ordering heuristic is used and combined with the topology of the concept to test. This is gradually leading to a causal graph which is transformed into a flow graph that can be simulated in system dynamics simulation tools. A new and easy approach to discover the laws governing the system dynamic model is also explained. Finally the model is simulated and analyzed. As a result, the method presented in this article offers several advantages: 1- it can be supported by a dedicated computer aided approach, 2- it brings simulation capabilities at very early design stage level where it is seldom present.

2004 ◽  
Vol 471-472 ◽  
pp. 255-259
Author(s):  
S.Q. Huang ◽  
Y.M. Han ◽  
Yu Dong Wang

The features of a newly developed multi-dimension squeezed penetration piling machine are presented in this paper. The simulation model is built and the squeezing mechanism is tested under simulation environment. With the simulation method key design parameters are predicted at the early design stage; the development cycle can be shortened; and the product quality can be improved.


Author(s):  
Lukman Irshad ◽  
Salman Ahmed ◽  
Onan Demirel ◽  
Irem Y. Tumer

Detection of potential failures and human error and their propagation over time at an early design stage will help prevent system failures and adverse accidents. Hence, there is a need for a failure analysis technique that will assess potential functional/component failures, human errors, and how they propagate to affect the system overall. Prior work has introduced FFIP (Functional Failure Identification and Propagation), which considers both human error and mechanical failures and their propagation at a system level at early design stages. However, it fails to consider the specific human actions (expected or unexpected) that contributed towards the human error. In this paper, we propose a method to expand FFIP to include human action/error propagation during failure analysis so a designer can address the human errors using human factors engineering principals at early design stages. To explore the capabilities of the proposed method, it is applied to a hold-up tank example and the results are coupled with Digital Human Modeling to demonstrate how designers can use these tools to make better design decisions before any design commitments are made.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wenting Liu ◽  
Qingliang Zeng ◽  
Lirong Wan ◽  
Chenglong Wang

It is important to allocate a reliability goal for the hydraulic excavator in the early design stage of the new system. There are some effective methods for setting reliability target and allocating its constituent subsystems in the field of aerospace, electric, vehicles, railways, or chemical system, but until now there is no effective method for the hydraulic excavator or engineering machinery. In this paper, an approach is proposed which combines with the conventional reliability allocation methods for setting reliability goals and allocating the subsystem and parts useful in the early design stage of the hydraulic excavator newly developed. It includes Weibull analysis method, modified Aeronautical Radio Inc. (ARINC) method, and modified systematic failure mode and effect analysis (FMEA) method. After completing reliability allocation, it is necessary to organize the designers and experts to evaluate the rationality of the reliability target through FEMA analysis considering feasibility of the improvement technically for the part which was new developed or had fault in its predecessor. The proposed approach provides an easy methodology for allocate a practical reliability goal for the hydraulic excavator capturing the real life behavior of the product. It proposes a simple and unique way to capture the improvement of the subsystems or components of the hydraulic excavator. The proposed approach could be extended to consider other construction machinery equipment and have practicality value to research excellent mechanical product.


Sign in / Sign up

Export Citation Format

Share Document