Noise Reduction Technique for Digital Image Based Full Field Strain Measurement

Author(s):  
Yoshitaka Wada ◽  
Tomonari Furukawa

In recent years several techniques of full-field measurement have been studied by digital image correlation method, moiré interference method and holographic interferometry method and so on. Image based method can be easily applied to large deformation problem and moving specimen at slow speed. Because digital camera capabilities, which are high resolution, low noise and faster data transfer speed, have been improved, very small strain measurement can be achieved by those improvements. The improvement will widen those applications, for example, moving object at high speed and less 0.1% strain measurement which is almost the same accuracy with a precise strain gauge. In order to apply the advanced application, noise reduction for a digital image and lens distortion correction for an optical system should be developed. In this paper we propose noise reduction technique using statistical camera model to be applied to any kinds of digital cameras.

2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


Author(s):  
Tzu-Yu Kuo ◽  
Wei-Chung Wang ◽  
Chun-I Chu ◽  
Jia-He Chen ◽  
Te-Heng Hung ◽  
...  

In this study, deformation of cylindrical shells under axial compressive load was studied and characterized by a noncontact detection technique, called digital image correlation (DIC). As opposed to commonly used strain gages for measuring structure strains at specific points, the DIC method can render not only 2D but also 3D full-field measurements for strain as well as structure deformation. The accuracy of strain measurement obtained using the DIC method was carefully validated by following ASTM standard E8 for strain measurement using strain gages in tensile tests. The DIC technique provided convenient measurements for characterizing the buckling behaviors of defective cylindrical shell samples. This study has engineering implications for providing 3D strain and deformation analyses to ensure structure reliability and safety.


2020 ◽  
Vol 40 (13) ◽  
pp. 1312005
Author(s):  
吴荣 Wu Rong ◽  
刘依 Liu Yi ◽  
周建民 Zhou Jianmin ◽  
张水强 Zhang Shuiqiang

Sign in / Sign up

Export Citation Format

Share Document