Knowledge Base Representation for Axiomatic Design Through Ontologies

Author(s):  
Zhuochen Shi ◽  
Gregory Mocko

Axiomatic Design has been applied and developed as a tool, offering a scientific basis for design and improving design activities. Axiomatic Design has been used in various fields such as software system design, structure design, and product design. However, several challenges and limitations exist in Axiomatic Design including: the inconsistency in identifying design parameters, existence of coupled design, and multiple groups of functional requirements and design parameters. Aimed at using Axiomatic Design to generate conceptual solutions in engineering design while overcoming its limitations, a formal ontology is developed. The ontology defines functional requirements, design parameters, concepts, components and variables and their relationships. Axioms and rules of Axiomatic Design for the ontology are summarized. The Axiomatic Design ontology is applied to the design of a car seat as an example generating several concepts, and then compared and analyzed multiple groups of the concepts with the help of Axiomatic Design rules. More design ideas can be generated by combining detailed concepts as the higher level possible solutions.

Author(s):  
Sang-ok Park ◽  
Jongmin Yoon ◽  
Hochan An ◽  
Jeonggyu Park ◽  
Gyung-Jin Park

As the demands of customers in the modern industry increased, the number of products, and the variety of components has increased. These issues have led to difficulties in product development and production. Modularization of products has advantages such as cost reduction, product development time reduction, and production time reduction. Modular design of products has been studied in the design activities of the modern industry. In this study, a modular design method is proposed to design a modular product based on axiomatic design (AD) and design structure matrix (DSM). AD and DSM are efficiently integrated into the proposed method. Functional requirements and design parameters are defined based on the Independence Axiom of AD, and the zigzagging process of AD is employed for the decomposition of the functional requirements (FRs) and design parameters (DPs). The design sequence is established based on the design matrix. Coupled or functionally close DPs are grouped into a module (Module 1). These modules are efficiently used in the design sequence. DSM is used to modularize the design parameters of the lowest level of axiomatic design. DSM is constructed based on physical interfaces and numerical clustering algorithms are used to identify strongly related components. They are grouped into a module (Module 2). Module 2 is exploited for production and management. Therefore, these two modules for different purposes can be used to increase efficiency in the design and production process. The proposed method is applied to two automobile parts such as the suspension system and cooling system. The results are discussed from the viewpoint of usefulness.


2018 ◽  
Vol 223 ◽  
pp. 01009
Author(s):  
Auðunn Herjólfsson ◽  
Haraldur Helgason ◽  
Sindri S. Ingvason ◽  
þráinn þórarinsson ◽  
Joseph Timothy Foley

With the explosion of smart devices, tablets can currently be found everywhere. From schools to kiosks to watching movies in bed, these devices are prevalent everywhere in modern life. The problem with watching movies in bed using tablets is the necessity of hand usage. The market currently holds a few products that attempt to solve this, but none truly frees the user, allowing them hands-free usage with an easy exit of the bed. In this paper, we will describe a design which, utilizing axiomatic design, will out-perform anything currently existing in the same field, by giving a stable viewing experience while fitting to nearly any bed or sofa. Axiomatic Design ensured a comprehensive design process by ensuring customer needs were transformed into carefully thought out functional requirements and design parameters while maintaining modularity.


Author(s):  
K. N. Song ◽  
B. S. Kang ◽  
K. H. Yoon ◽  
S. K. Choi ◽  
G. J. Park

Recently, much attention has been focused on the design of the fuel assemblies in the Pressurized Light Water Reactor (PLWR). The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For the conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detailed design is carried out based on the result of the axiomatic design. For the detailed design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.


2019 ◽  
Vol 957 ◽  
pp. 437-444
Author(s):  
Adelina Hriţuc ◽  
Margareta Coteaţă ◽  
Oana Dodun ◽  
Gheorghe Nagîţ ◽  
Laurenţiu Slătineanu

The obtaining of information concerning the processability by injection of plastics could facilitate a better design of injection manufacturing processes of parts made of such materials. With this aim in view, equipment for testing the processability by injection of plastics was designed. On the other hand, there are known the possibilities of using the axiomatic design principles to solve equipment or various design activities problems. Within this paper, an evaluation of the complying with the requests of the axiomatic design by the designed equipment was developed. The axiom of independence of the functional requirements necessary to be achieved by the equipment was applied. The analysis allowed the formulation of some remarks concerning the fulfillment of some principles of axiomatic design by the constructive solution proposed for the equipment for testing the processability by injection of plastics.


2019 ◽  
Vol 301 ◽  
pp. 00015
Author(s):  
Wenguang Lin ◽  
Renbin Xiao ◽  
Rongshen Lai ◽  
Xiaozhen Guo

Axiomatic design theory is widely used in new product development by providing design solutions through mapping between functional requirements and design parameters. However, the theory does not provide a method to help designer obtain and select design parameters. To this end, this paper introduces patent analysis to overcome the deficiency. Firstly, functional requirements are transformed into patent search terms, and design parameters are obtained from patents. Secondly, morphological matrix is used to represent the relationships between target function and multiple design parameters. Thirdly, design parameters with higher patent frequency are chose and combined into a new scheme. Finally, the scheme is evaluated by the independent axiom of Axiomatic Design theory. The methodology is demonstrated and validated with a case study of spa shower.


2019 ◽  
Vol 301 ◽  
pp. 00008
Author(s):  
Christopher Spalding ◽  
ZiXiao Wei ◽  
Anthony Yarkov

Axiomatic Design was applied in an undergraduate student-led project which culminated in the creation of an agile ergonomic monitor stand, a solution designed to optimise the productivity and working conditions of the office environment. The customer domain was determined using a Mendelow’s Stakeholder Analysis followed by contextual inquiries and lead user interviews. These customer needs were organised into different levels via Maslow’s Hierarchy and redefined in terms of functional requirements. The functional requirements were decomposed and classified using the Kano Customer Satisfaction and Long Tail Models, and ultimately organised into a functional requirement tree. Design constraints were considered and listed, and the customer and functional domains were compared using a House of Quality. This allowed potential design paths to be devised with respect to the chosen functional requirements. The path involving the smart ergonomic stand was chosen from a number of potential products assessed against the functional requirements by listing the potential design parameters in a morphologicalmatrix. Concepts were designed by creating combinations of these design parameters, with their suitability being judged using the Independence Axiom. The physical form of the solution was inspired using biological sources. The final details of the design were chosen using the Information Axiom to determine their suitability in practical implementation allowing the final concept to be produced in a 3D CAD model.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 31
Author(s):  
Pratap Sriram Sundar ◽  
Chandan Chowdhury ◽  
Sagar Kamarthi

The design of the human ear is one of nature’s engineering marvels. This paper examines the merit of ear design using axiomatic design principles. The ear is the organ of both hearing and balance. A sensitive ear can hear frequencies ranging from 20 Hz to 20,000 Hz. The vestibular apparatus of the inner ear is responsible for the static and dynamic equilibrium of the human body. The ear is divided into the outer ear, middle ear, and inner ear, which play their respective functional roles in transforming sound energy into nerve impulses interpreted in the brain. The human ear has many modules, such as the pinna, auditory canal, eardrum, ossicles, eustachian tube, cochlea, semicircular canals, cochlear nerve, and vestibular nerve. Each of these modules has several subparts. This paper tabulates and maps the functional requirements (FRs) of these modules onto design parameters (DPs) that nature has already chosen. The “independence axiom” of the axiomatic design methodology is applied to analyze couplings and to evaluate if human ear design is a good design (i.e., uncoupled design) or a bad design (i.e., coupled design). The analysis revealed that the human ear is a perfect design because it is an uncoupled structure. It is not only a perfect design but also a low-cost design. The materials that are used to build the ear atom-by-atom are chiefly carbon, hydrogen, oxygen, calcium, and nitrogen. The material cost is very negligible, which amounts to only a few of dollars. After a person has deceased, materials in the human system are upcycled by nature. We consider space requirements, materials cost, and upcyclability as “constraints” in the axiomatic design. In terms of performance, the human ear design is very impressive and serves as an inspiration for designing products in industrial environments.


Author(s):  
Qijian Zhao ◽  
Yanlong Cao ◽  
Ting Liu ◽  
Lifei Ren ◽  
Jiangxin Yang

Tolerance specification involves selecting tolerance types for functional or assembly features to control the variation of features. General methods tend to formulate a frame to specify all the features of part, while the specification methods or reasoning rules for specific feature (point, line, plane, cylinder, etc.) are less studied. This paper focuses on the tolerance-type selection of the plane feature. The theory of axiomatic design is introduced to select the tolerance type for the plane feature, and the problem is interpreted as a redundant decoupled design. To achieve the functional requirements, design parameters and constraints of physics domain are determined. The mapping rules, which are between design parameters and functional requirements, are generated based on the independent axiom. Considering the large number of solutions of the design, the constraints such as cost and inspection methods are introduced to reduce the number of solutions. The minimum information axiom is introduced for the optimum mapping rules and the tolerance types are selected by the optimum mapping rules for the plane feature. Finally, the specification process is concluded and demonstrated by means of an example.


2018 ◽  
Vol 223 ◽  
pp. 01017 ◽  
Author(s):  
Yuchen Wang ◽  
Ang Liu

The axiomatic design plays a critical role in transferring FRs into DPs and organising scattered design information. Nowadays, the axiomatic design is commonly applied to student engineering design education. Although it assists design organisation, some procedures can be challenging for invoice students. This paper is written to reflect benefits, challenges and potential mistakes when the axiomatic design is applied by invoice students. The reflection is based on a case study, a student lead battery thermal controller (BTC) on a high-altitude balloon is used as the example. Relevant background about the high-altitude balloon was introduced at first. Previous essential information of customer domain and functional domain was clarified before the axiomatic design. Design parameters(DPs) were generated with Morphological Chart to compose candidate concepts. FR-DP matrix was used to evaluate the independence of functional requirements(FRs). Candidate concepts were then selected by probability density function graphs. The most proper concept then was out of Pugh’s Matrix. Through this axiomatic design application, benefits, challenges and potential mistakes were reflected for invoice students. Benefits included convenient errors correction and competent concepts generation. Challenges contain the DPs performance value determination and physical integration of concept. Potential mistakes include generation of inconsistent performance value for bottom-level FRs and invalid DPs.


Author(s):  
Mijeong Shin ◽  
James R. Morrison ◽  
Hyo Won Suh

With the increasing environmental sophistication of consumers, there is a need to consider environmental factors and sustainability in the design process. This paper proposes a design methodology intended for software implementation called eAD+ to address the following four issues: 1) there are inherent couplings between eco-factors and product design parameters, 2) eco-factors are seldom structured for ready use within all phases of the design process, 3) there is a need for a formal feedback mechanism from the results of eco-analysis to the design process, and 4) it can be difficult to identify which design choice causes the most egregious environmental issue or functional coupling. eAD+ is based primarily on the Axiomatic Design (AD) methodology and addresses these issues as follows. First, AD directly identifies couplings between the functional requirements (FRs) in a design so that efforts, such as TRIZ, can be applied to address them. Second, as common eco-factors do not provide sufficient structure for inclusion in the AD framework, we develop structured eco-FRs and constraints. These are included alongside the product FRs throughout the design process. Third, the subset of the design matrix (DM) relating the eco-FRs to the design parameters explicitly incorporates feedback from eco-analysis into the design process. Here a database containing environmental (or sustainability) information is employed to evaluate the design. Fourth, we employ an augmented DM (drawing inspiration from the House of Quality of QFD) that provides weights highlighting which design parameter has the greatest influence on eco-factors and functional couplings.


Sign in / Sign up

Export Citation Format

Share Document