Nonlinear Vibrations of Rectangular Mooney-Rivlin Membrane Resting on a Nonlinear Elastic Foundation

Author(s):  
Renata M. Soares ◽  
Paulo B. Gonçalves

The aim of the present work is to investigate the nonlinear vibration response of a pre-stretched rectangular hyperelastic membrane resting on a nonlinear elastic foundation. The membrane is composed of an isotropic, homogeneous and hyperelastic material, which is modeled as a Mooney-Rivlin incompressible material. The elastic foundation is described by a Winkler type nonlinear model with cubic nonlinearity. First the exact solution of the membrane under a biaxial stretch is obtained. Then the equations of motion of the pre-stretched membrane resting on the nonlinear foundation are derived. From the linearized equations, the natural frequencies and mode shapes of the membrane are obtained analytically. Then the natural modes are used to approximate the nonlinear deformation field using the Galerkin method. The results compare well with the results evaluated for the same membrane using a nonlinear finite element formulation. The results show the strong influence of the initial stretching ratio and foundation parameters on the linear and nonlinear oscillations and stability of the membrane.

Author(s):  
Renata M. Soares ◽  
Paulo B. Gonçalves

This research presents the mathematical modeling for the nonlinear oscillations analysis of a pre-stretched hyperelastic annular membrane with varying density under finite deformations. The membrane material is assumed to be homogeneous, isotropic, and neo-Hookean and the variation of the membrane density in the radial direction is investigated. The membrane is first subjected to a uniform radial traction along its outer circumference and the stretched membrane is fixed along the outer boundary. Then the equations of motion of the pre-stretched membrane are derived. From the linearized equations of motion, the natural frequencies and mode shapes of the membrane are obtained analytically. The vibration modes are described by hypergeometric functions, which are used to approximate the nonlinear deformation field using the Galerkin method. The results are compared with the results evaluated for the same membrane using a nonlinear finite element formulation. The results show the influence of the stretching ratio and varying density on the linear and nonlinear oscillations of the membrane.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750047 ◽  
Author(s):  
Yi-Ren Wang ◽  
Li-Ping Wu

This paper studies the vibration of a nonlinear 3D-string fixed at both ends and supported by a nonlinear elastic foundation. Newton’s second law is adopted to derive the equations of motion for the string resting on an elastic foundation. Then, the method of multiple scales (MOMS) is employed for the analysis of the nonlinear system. It was found that 1:3 internal resonance exists in the first and fourth modes of the string when the wave speed in the transverse direction is [Formula: see text] and the elasticity coefficient of the foundation is [Formula: see text]. Fixed point plots are used to obtain the frequency responses of the various modes and to identify internal resonance through observation of the amplitudes and mode shapes. To prevent internal resonance and reduce vibration, a tuned mass damper (TMD) is applied to the string. The effects of various TMD masses, locations, damper coefficients ([Formula: see text]), and spring constants ([Formula: see text]) on overall damping were analyzed. The 3D plots of the maximum amplitude (3D POMAs) and 3D maximum amplitude contour plots (3D MACPs) are generated for the various modes to illustrate the amplitudes of the string, while identifying the optimal TMD parameters for vibration reduction. The results were verified numerically. It was concluded that better damping effects can be achieved using a TMD mass ratio [Formula: see text]–0.5 located near the middle of the string. Furthermore, for damper coefficient [Formula: see text], the use of spring constant [Formula: see text]–13 can improve the overall damping.


2019 ◽  
Vol 13 (7) ◽  
pp. 49 ◽  
Author(s):  
Ola Ragb ◽  
Mokhtar Mohamed ◽  
M.S. Matbuly

Magneto-Electro-Thermo nanobeam resting on a nonlinear elastic foundation is presented. This beam is subjected to the external electric voltage and magnetic potential, mechanical potential and temperature change. Also, we added the new material PTZ-5H-COFe2O4. The governing equations and boundary conditions are derived using Hamilton principle. These equations are discretized by using three differential quadrature methods and iterative quadrature technique to determine the natural frequencies and mode shapes. Numerical analysis is introduced to explain the influence of computational characteristics of the proposed schemes on convergence, accuracy and efficiency of the obtained results. The obtained results agreed with the previous analytical and numerical ones. A detailed parametric study is conducted to investigate the influences of different boundary conditions, various composite materials, nonlinear elastic foundation, nonlocal parameter, the length-to-thickness ratio, external electric and magnetic potentials, axial forces, temperature and their effects on the vibration characteristics of Magneto-Electro-Thermo-Elastic nanobeam.


2020 ◽  
pp. 089270572093595
Author(s):  
Dang Thuy Dong ◽  
Vu Hoai Nam ◽  
Nguyen Thoi Trung ◽  
Nguyen Thi Phuong ◽  
Vu Tho Hung

In this article, the nonlinear thermomechanical buckling behaviors of sandwich functionally graded plates subjected to an axial compression and external pressure are analytically analyzed resting on nonlinear elastic foundation. Assuming that the plates are reinforced by oblique stiffeners and rested on nonlinear elastic foundation. The formulations are established using the higher-order shear deformation theory taking into account the geometrical nonlinearity of von Kármán. The Lekhnitskii’s smeared stiffener technique is developed for shear deformable oblique stiffener system using the coordinate transformation technique with both mechanical and thermal terms. The Galerkin method is utilized to obtain the nonlinear algebraically equation system, then, solve it to determine the explicit expressions of critical buckling loads and postbuckling load–deflection curves. Numerical results show the effects of temperature, nonlinear elastic foundation, stiffeners, and material and geometrical properties on nonlinear behaviors of plates.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Gözde Sarı ◽  
Mehmet Pakdemirli

An investigation into the dynamic behavior of a slightly curved resonant microbeam having nonideal boundary conditions is presented. The model accounts for midplane stretching, an applied axial load, and a small AC harmonic force. The ends of the curved microbeam are on immovable simple supports and the microbeam is resting on a nonlinear elastic foundation. The forced vibration response of curved microbeam due to the small AC load is obtained analytically by means of direct application of the method of multiple scales (a perturbation method). The effects of the nonlinear elastic foundation as well as the effect of curvature on the vibrations of the microbeam are examined. It is found that the effect of curvature is of softening type. For sufficiently high values of the coefficients, the elastic foundation and the axial load may suppress the softening behavior resulting in hardening behavior of the nonlinearity. The frequencies and mode shapes obtained are compared with the ideal boundary conditions case and the differences between them are contrasted on frequency-response curves. The frequency response and nonlinear frequency curves obtained may provide a reference for the choice of reasonable resonant conditions, design, and industrial applications of such systems. Results may be beneficial for future experimental and theoretical works on MEMS.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


Sign in / Sign up

Export Citation Format

Share Document