Anti-Lock Wheel Slip Control With an Adaptive Searching Algorithm for the Optimal Slip

Author(s):  
Ning Pan ◽  
Liangyao Yu ◽  
Lei Zhang ◽  
Zhizhong Wang ◽  
Jian Song

An adaptive searching algorithm for the optimal slip during ABS wheel slip control is proposed. By taking advantage of the fluctuation of wheel slip control, the direction towards the optimal slip can be found, and the target slip calculated by the algorithm asymptotically converged to the optimal slip, which is proved using the Lyapunov theory. A gain-scheduling wheel slip controller is developed to control the wheel slip to the target slip. Simulations on the uniform road and on the road with changed friction are carried out to verify the effectiveness of the proposed algorithm. Simulation results show that the ABS algorithm using the proposed searching algorithm can make full use of the road friction and adapts to road friction changes. Comparing with the conventional rule-based ABS, the pressure modulation amplitude and wheel speed fluctuation is significantly reduced, improving control performance of ABS.

2006 ◽  
Vol 129 (1) ◽  
pp. 20-31 ◽  
Author(s):  
Sergio M. Savaresi ◽  
Mara Tanelli ◽  
Carlo Cantoni

In road vehicles, wheel locking can be prevented by means of closed-loop anti-lock braking systems (ABS). Automatic braking is extensively used also for electronic stability control (ESC) systems. In braking control systems, two output variables are usually considered for regulation purposes: wheel deceleration and wheel longitudinal slip. Wheel deceleration is the controlled output traditionally used in ABS, since it can be easily measured with a simple wheel encoder; however, the dynamics of a classical regulation loop on the wheel deceleration critically depend on the road conditions. A regulation loop on the wheel longitudinal slip is simpler and dynamically robust; moreover, slip control is perfectly suited for both ABS and ESC applications. However, the wheel-slip measurement is critical, since it requires the estimation of the longitudinal speed of the vehicle body, which cannot be directly measured. Noise sensitivity of slip control hence is a critical issue, especially at low speed. In this work a new control strategy called mixed slip-deceleration (MSD) control is proposed: the basic idea is that the regulated variable is a convex combination of wheel deceleration and longitudinal slip. This strategy turns out to be very powerful and flexible: it inherits all the attractive dynamical features of slip control, while providing a much lower sensitivity to slip-measurement noise.


Author(s):  
Scott Kimbrough

In order to avoid accidents drivers must maintain an adequate amount of separating distance between themselves and vehicles in front of them. If the driver of the lead vehicle suddenly applies his brakes, the driver of the following vehicle needs sufficient time and space to react and apply his brakes to come to a stop. If all vehicles and drivers had the same brake performance, then the required separating distance would simply be the distance traveled while reacting; basically the product of the speed being traveled times the reaction time of the driver. This simple rule would guarantee that a following driver would be able to apply his brakes before arriving at the place on the road where the lead driver applied his brakes. In real life though, all vehicle and drivers do not have the same stopping performance. There are variations due to the different tires on the vehicles, the brake balance of the vehicles, the reaction rates of the drivers, the skills of the drivers, and the traction afforded by the particular wheel paths followed by the vehicles. One way to deal with these variations is to use probability theory [2–6]. In this paper probability theory is used to determine how following distance should vary as a function of speed, average road friction, and variation of the road friction, so that the probability of a collision remains below a desired threshold.


1976 ◽  
Vol 190 (1) ◽  
pp. 233-244
Author(s):  
S. W. E. Earles ◽  
B. R. Aurora

SYNOPSIS Initially the vehicle response during braking is investigated with the aid of a mathematical model having a realistic road input. Using an integrated hybrid computer, the road-tyre characteristics are simulated by generating non-linear functions on the digital computer, while the mathematical model is described on the analogue computer with parallel logic facility. An adaptive braking control system is proposed which measures and processes the rear-wheel motion. Activation of the system occurs when the wheel deceleration and a quasi wheel slip reach given reference values. The adaptive system as developed and optimised on the hybrid computer is implemented on the rear wheels of the test vehicle. The predicted values of wheel speed, brake-pressure modulation, stopping distance and vehicle yaw are shown to compare favourably with the test results.


2016 ◽  
Vol 28 (2) ◽  
pp. 91-103 ◽  
Author(s):  
Sajjad Samiee ◽  
Shahram Azadi ◽  
Reza Kazemi ◽  
Arno Eichberger

This paper proposes a novel algorithm for decision-making on autonomous lane change manoeuvre in vehicles. The proposed approach defines a number of constraints, based on the vehicle’s dynamics and environmental conditions, which must be satisfied for a safe and comfortable lane change manoeuvre. Inclusion of the lateral position of other vehicles on the road and the tyre-road friction are the main advantages of the proposed algorithm. To develop the lane change manoeuvre decision-making algorithm, first, the equations for the lateral movement of the vehicle in terms of manoeuvre time are produced. Then, the critical manoeuvring time is calculated on the basis of the constraints. Finally, the decision is made on the feasibility of carrying out the manoeuvre by comparing the critical times. Numerous simulations, taking into account the tyre-road friction and vehicles’ inertia and velocity, are conducted to compute thecritical times and a model named TUG-LCA is presented based on the corresponding results.


Author(s):  
Pavel Vijay Gaurkar ◽  
Karthik Ramakrushnan ◽  
Akhil Challa ◽  
Shankar C Subramanian ◽  
Gunasekaran Vivekanandan ◽  
...  

Knowledge of the tyre-road interface traction limit during braking of a road vehicle can drastically improve safety and ensure stable braking on varied road conditions. This study proposes an optimal reference slip algorithm that determines the road surface while the vehicle is braking, by implicitly tracking the traction limit. It presents wheel slip variance regulation as a potential approach towards reference wheel slip estimation for wheel slip regulation (WSR). The variance regulation approach computes reference wheel slip using past wheel slip estimates and regulates wheel slip variation at a set point. This variance regulation problem was solved using least-squares estimation, yielding reference slip dynamics. A 3-staged nested control architecture was developed with reference slip dynamics to yield an anti-lock braking system (ABS) algorithm consisting of a brake controller, WSR algorithm and reference slip estimation. The algorithm was experimentally corroborated in a Hardware-in-Loop setup consisting of the pneumatic brake system of a heavy commercial road vehicle, and IPG TruckMaker®, a vehicle dynamics simulation software. The proposed ABS algorithm was tested on straight roads with homogeneous surfaces, split friction surfaces, and transition friction surfaces. It ensured stable braking in all road cases, with a 7%–18% reduction in braking distance on homogeneous road surfaces compared to the same vehicle without ABS. The vehicle directional stability was retained on a split-friction surface, and the ABS algorithm was observed to adapt to sudden transitions in the road surface.


Author(s):  
S. Tajeddin ◽  
M. Batra ◽  
N. L. Azad ◽  
J. McPhee ◽  
R. A. Fraser

After more than 30 years since the Antilock Braking System (ABS) was first introduced, it has become the most important active safety system used on passenger cars. However, it is hard to find a precise description of ABS, its stability and performance in the literature. Most of ABS algorithms currently used are not adaptive to changes of road friction conditions. The aim of our work is to provide a new ABS algorithm that is adaptive to changes of road conditions. To this end, an online parameter estimator is designed to estimate the road characteristics and maximum possible deceleration. Then, a driver demand regulator is proposed to limit the demanded deceleration to the maximum values. In this new strategy, road characteristics are estimated prior to the braking, not during the braking which makes it fast and adaptive. The proposed ABS algorithm is simulated on an artificial driving track and simulation results have been compared to a simple non-adaptive 6-phase Bosch ABS algorithm as our benchmark that is based on deceleration thresholds. Results show a better braking performance and more than 30% of reduction in braking distance.


2020 ◽  
Author(s):  
Ehsan Arasteh ◽  
Francis Assadian

This chapter discusses control design of three different brake-by-wire actuators. The brakes studied include an Electro-Hydraulic brake with pressure modulation for wheel slip control, and two different Electro-Mechanical Brake configurations that directly use electric motors to control the movement of the caliper for wheel slip control. After modeling the actuators with the use of bond graphs, a cascaded control architecture is used to control these active systems. Individual controllers are designed using Youla robust control design method. Then, a feed-forward disturbance rejection is designed and added to the loops and its effectiveness is analyzed. Finally, a one-wheel model is used to compare these brake-by-wire systems in terms of stopping distance and actuator efforts.


Sign in / Sign up

Export Citation Format

Share Document