Uncertainty Topics for Engineering Design Courses

Author(s):  
Xiaoping Du

Uncertainty commonly exists in engineering applications, especially in a design process. Quantifying and managing uncertainty is often a core consideration during the design stage. Due to its importance in engineering practices, uncertainty is gradually introduced and taught in a number of engineering courses. Uncertainty topics, however, are still limited and the teaching materials on uncertainty are still currently lacking. This paper focuses on possible topics that could be introduced in various engineering courses, particularly in design courses. The topics cover the following aspects: identify and take actions on potential failure modes, account for system reliability in the early design stage, quantify the effect of uncertainty, and mitigate the effect of uncertainty in latter design stages. This paper also introduces basics of related design methodologies, such as reliability-based design, robust design, and design for six sigma in order for interested educators to develop familiarity of uncertainty. This paper also reports the implementation and experience of uncertainty education at the Missouri University of Science and Technology.

Author(s):  
Ryan S. Hutcheson ◽  
Irem Y. Tumer

NASA’s Ames Research center is currently designing a testbed to validate and compare potential Integrated System Health Management (ISHM) technologies. The proposed testbed represents a typical power system for a spacecraft and includes components such as a fuel cell, solar cells and redundant batteries. To fulfill design requirements, the testbed must be capable of hosting a wide variety of ISHM technologies including those developed by NASA as well as those developed in the aerospace industry abroad. An internal fault injection subsystem must be built into the system to provide a common interface for evaluating these different ISHM technologies. Additionally, to ensure robust operation of the testbed, the capability to detect and manage external faults must also be present. In order to develop a set of requirements for the internal fault injection subsystems as well as predict external faults, a comprehensive set of potential failures must be identified for all of the components of the testbed. To best aid the development of the testbed, these failures needed to be identified as early as the conceptual design phase, where little is known about the actual components that would comprise the finished system. This paper demonstrates the use a function-based failure mode identification method to identify the potential failures of the testbed during the conceptual design phase. Using this approach, designers can explore the potential failure modes at the functional design stage, before a form or solution has been determined. A function-failure database is used to associate the failures of components from previous design efforts to the testbed based on common functionality. The result is a list of potential failure modes and associated failure rates, which are used to improve the design of the testbed as well as provide a framework for the fault injection subsystem.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Yao Cheng ◽  
Xiaoping Du

It is desirable to predict product reliability accurately in the early design stage, but the lack of information usually leads to the use of independent component failure assumption. This assumption makes the system reliability prediction much easier, but may produce large errors since component failures are usually dependent after the components are put into use within a mechanical system. The bounds of the system reliability can be estimated, but are usually wide. The wide reliability bounds make it difficult to make decisions in evaluating and selecting design concepts, during the early design stage. This work demonstrates the feasibility of considering dependent component failures during the early design stage with a new methodology that makes the system reliability bounds much narrower. The following situation is addressed: the reliability of each component and the distribution of its load are known, but the dependence between component failures is unknown. With a physics-based approach, an optimization model is established so that narrow bounds of the system reliability can be generated. Three examples demonstrate that it is possible to produce narrower system reliability bounds than the traditional reliability bounds, thereby better assisting decision making during the early design stage.


Author(s):  
Bryan M. O’Halloran ◽  
Robert B. Stone ◽  
Irem Y. Tumer

This scope of this paper is to provide an extension to the Function Failure Design Method (FFDM). We first implement a more robust knowledge base using Failure Mode/Mechanism Distributions 1997 (FMD-97). Then failure rates from Nonelectric Parts Reliability Data (NPRD-95) are added to more effectively determine the likelihood that a failure mode will occur. The proposed Functional Failure Rate Design Method (FFRDM) uses functional inputs to effectively offer recommendations to mitigate failure modes that have a high likelihood of occurrence. This work uses a past example where FFDM and Failure Modes and Effects Analysis (FMEA) were compared to show that improvements have been made. A four step process is presented to show how the FFRDM is used during conceptual design.


2016 ◽  
Vol 852 ◽  
pp. 799-805 ◽  
Author(s):  
M.K. Loganathan ◽  
Priyom Goswami ◽  
Bedabrat Bhagawati

A method based on structural modelling is developed for failure evaluation and analysis of mechatronics-based production systems. Majority of the elements in production systems are mechatronics-based, which includes various elements such as; electrical, electronic and mechanical. Each of these may have different failure types that may be interdependence/interactive. The reliability of the system mainly depends on how well the failures are taken care of during design stage. In general, individual failures are generalized into probable failure modes and early identification of these helps to reduce their probability. However, consideration of failures and their interdependence / interactions will help to evaluate and analyse the failures of complicated systems in an efficient and effective manner and increase the inherent system reliability. The system structure modeling helps in this regard. Digraph model, in conjunction with matrix method, is employed for failure evaluation and analysis of a mechatronics-based production system based on its structure.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Nita Yodo ◽  
Pingfeng Wang

The continuous pursuits of developing a better, safer, and more sustainable system have pushed systems to grow in complexity. As complexity increases, challenges consequently arise for system designers in the early design stage to take account of all potential failure modes in order to avoid future catastrophic failures. This paper presents a resilience allocation framework for resilience analysis in the early design stage of complex engineering systems. Resilience engineering is a proactive engineering discipline that focuses on ensuring the performance success of a system by adapting to changes and recovering from failures under uncertain operating environments. Utilizing the Bayesian network (BN) approach, the resilience of a system could be analyzed and measured quantitatively in a probabilistic manner. In order to ensure that the resilience of a complex system satisfies the target resilience level, it is essential to identify critical components that play a key role in shaping the top-level system resilience. Through proper allocation of resilience attributes to these critical components, not only target could resilience requirements be fulfilled, global cascading catastrophic failure effects could also be minimized. An electrical distribution system case study was used to demonstrate the developed approach, which can also be used as a fundamental methodology to quantitatively evaluate resilience of engineered complex systems.


Author(s):  
Ali Kaveh ◽  
Kiarash Biabani Hamedani ◽  
Mohammad Kamalinejad

In this paper, recently developed set theoretical variants of the teaching-learning-based optimization (TLBO) algorithm and the shuffled shepherd optimization algorithm (SSOA) are employed for system reliability-based design optimization (SRBDO) of truss structures. The set theoretical variants are designed based on a simple framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. In addition, the framework is applied to the Jaya algorithm, leading to a set-theoretical variant of the Jaya algorithm. So far, most of the reliability-based design optimization studies have focused on the reliability of single structural members. This is due to the fact that the optimization problems with system reliability-based constraints are computationally expensive to solve. This is especially the case of statically redundant structures, where the number of failure modes is so high that it is impractical to identify all of them. System-level reliability analysis of truss structures is carried out by the branch and bound method by which the stochastically dominant failure paths are identified within a reasonable time. At last, three numerical examples, including size optimization of truss structures, are presented to illustrate the effectiveness of the proposed SRBDO approach. The results indicate the efficiency and applicability of the set theoretical optimization algorithms to solve the SRBDO problems of truss structures.


2018 ◽  
Vol 204 ◽  
pp. 01012
Author(s):  
Hilma Raimona Zadry ◽  
Dendi Adi Saputra ◽  
Agung Budiman Tabri ◽  
Difana Meilani ◽  
Dina Rahmayanti

The Failure Modes and Effects Analysis (FMEA) method has been widely recognized as a tool that systematically identifies the consequences and failures of the system or process, and reduces or eliminates the chances of the failure. This study applies that method to evaluate the causes of failure in the use of sugarcane machine that have been designed in the previous studies. FMEA approach anticipated the failures at the design stage, so that a more reliable and ergonomic design can be produced for future sugarcane machine. The potential failure identified from the machine consists of capacity issues, machine maintenance, preliminary treatment, and procedures of use. The study found that capacity issues are the priority problems that cause the machine failure. Then, this study proposed some actions to reduce the risk priority number (RPN) on 12 failures.


Author(s):  
Srikesh G. Arunajadai ◽  
Robert B. Stone ◽  
Irem Y. Tumer

Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently failure identification procedures (such as FMEA, FMECA and FTA) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.


2019 ◽  
Vol 35 (4) ◽  
pp. 299-308
Author(s):  
Duo Ok

Over the last few decades, there have been a significant number of accidents on crude oil tankers, floating production storage and offloading (FPSO) and offshore units due to fire and explosion, which have resulted in loss of lives, assets, and environmental damage. These incidents increase scrutiny and questions on the current level of safety design in hydrocarbon handling spaces and other high-risk spaces in oil tankers and FPSOs. There are many factors which may contribute to these incidents, including; defects of equipment and components, overlook during design, inappropriate maintenance procedure and history, improper workmanship, and lack of company safety procedures and instruction during maintenance and emergency responses. This study is focused on and has discussed all safety aspects and barriers for the enclosed cargo-handling spaces in tankers and offshore units. Various existing regulations, standards, and guidelines have addressed safety design of enclosed cargo-handling spaces. These requirements and guidelines are referred and investigated to identify typical industry gaps in design and to recommend best engineering practices. The proposed key design recommendations may be considered at the early design stage of new building or conversion projects to enhance the overall safety and to reduce the likelihood of critical safety events.


Sign in / Sign up

Export Citation Format

Share Document