Infrastructure Inspection Using an Unmanned Aerial System (UAS) With Metamodeling-Based Image Correction

Author(s):  
Chen-Ming Kuo ◽  
Chung-Hsin Kuo ◽  
Shu-Ping Lin ◽  
Mark Christian E. Manuel ◽  
Po Ting Lin ◽  
...  

Public infrastructures such as bridges are common civil structures for road and railway transport. In Poland, many of the steel truss bridges were constructed in the 1950s or earlier. The aging managements and damage assessments are required to ensure safe operations of these old bridges. The first step of damage assessment is usually done via visual inspection. The said inspection procedure can be expensive, laborious and dangerous as it is often performed by trained personnel. As a solution to this, we have developed and used a custom-designed, modular aerial robot equipped with a CCD camera for the collection of high-resolution images. The images were merged into one single, high-resolution facade map that will be the basis for subsequent evaluation by bridge inspectors. It was observed that the collected images had encountered irregularities which decreases the reliability of the facade map. We have conducted experiments to estimate the correction of image perspective in terms of attitude and position of unmanned aerial vehicle (UAV). A Kriging model was utilized to parametrically model the aforementioned nonlinear relationship. The image reliability is then evaluated based on the variance of the parametric model. The generated information is further used for high fidelity automated image correction and stitching.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1029-1030
Author(s):  
H.W. Zandbergen

Exit waves can be reconstructed from through focus series of HREM images or by off-axis holography [1]. We have applied the through focus method to reconstruct exit waves, using algorithms developed by Van Dyck and Coene [2]. Electron microscopy was performed with a Philips CM30ST electron microscope with a field emission gun operated at 300 kV. The high resolution images were recorded using a Tietz software package and a 1024x1024 pixel Photometrix CCD camera having a dynamic range of 12 bits. The reconstructions were done using 15-20 images with focus increments of 5.2 nm. The resulting exit waves were corrected posteriorly for the three fold astigmatism.The exit wave is complex; consequently it contains phase and amplitude. Since in the very thin regions the specimen acts as a thin phase object, such a thin area will show little contrast, an example of which is shown in Figure 1.


2021 ◽  
Vol 11 (5) ◽  
pp. 2105
Author(s):  
Vladan Papić ◽  
Petar Šolić ◽  
Ante Milan ◽  
Sven Gotovac ◽  
Miljenko Polić

Search and rescue (SAR) missions comprise search for, and provision of aid to people who are in distress or imminent danger. Providing the best possible input for the planners and search teams, up-to-date information about the terrain is of essential importance because every additional hour needed to search a person decreases probability of success. Therefore, availability of aerial images and updated terrain maps as a basis for planning and monitoring SAR missions in real-time is very important for rescuers. In this paper, we present a system for transmission of high-resolution images from an unmanned aerial vehicle (UAV) to the ground station (GS). We define and calculate data rate and transmission distance requirements between the UAV and GS in a mission scenario. Five tests were designed and carried out to confirm the viability of the proposed system architecture and modules. Test results present throughput measurements for various UAV and GS distances, antenna heights and UAV antenna yaw angles. Experimental results from the series of conducted outdoor tests show that the proposed solution using two pMDDL2450 datalinks at 2.4 GHz and a directional antenna on the receiving side can be used for a real-time transmission of high-resolution images acquired with a camera on a UAV. Achieved throughput at a UAV-GS distance of 5 km was 1.4 MB/s (11.2 Mbps). The limitations and possible improvements of the proposed system as well as future work are also discussed.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 226 ◽  
Author(s):  
Stefano Marino ◽  
Arturo Alvino

An on-farm research study was carried out on two small-plots cultivated with two cultivars of durum wheat (Odisseo and Ariosto). The paper presents a theoretical approach for investigating frequency vegetation indices (VIs) in different areas of the experimental plot for early detection of agronomic spatial variability. Four flights were carried out with an unmanned aerial vehicle (UAV) to calculate high-resolution normalized difference vegetation index (NDVI) and optimized soil-adjusted vegetation index (OSAVI) images. Ground agronomic data (biomass, leaf area index (LAI), spikes, plant height, and yield) have been linked to the vegetation indices (VIs) at different growth stages. Regression coefficients of all samplings data were highly significant for both the cultivars and VIs at anthesis and tillering stage. At harvest, the whole plot (W) data were analyzed and compared with two sub-areas characterized by high agronomic performance (H) yield 20% higher than the whole plot, and low performances (L), about 20% lower of yield related to the whole plot). The whole plot and two sub-areas were analyzed backward in time comparing the VIs frequency curves. At anthesis, more than 75% of the surface of H sub-areas showed a VIs value higher than the L sub-plot. The differences were evident also at the tillering and seedling stages, when the 75% (third percentile) of VIs H data was over the 50% (second percentile) of the W curve and over the 25% (first percentile) of L sub-plot. The use of high-resolution images for analyzing the frequency value of VIs in different areas can be a useful approach for the detection of agronomic constraints for precision agriculture purposes.


Author(s):  
M. Rokhis Khomarudin ◽  
. Suwarsono ◽  
Dini Oktavia Ambarwati ◽  
Gunawan Prabowo

The flood hit Kampung Pulo region in almost every year. This disaster has caused the evacuation of some residents in weeks. Given the frequency of occurrence is quite high in the region it is necessary to do a study to support disaster risk reduction. This study aimed to evaluate the incidence of flooding that occurred in Kampung Pulo in terms of topography, river conditions, characteristics of the building, and socioeconomic conditions. Methods of study include geomorphology analysis, identification of areas of stagnant, the estimated number of people exposed, the estimation of socio-economic conditions of the population, as well as determining the location of an evacuation. The data used is high-resolution remote sensing imagery is QuickBird and SPOT-6. It also used the results of aerial photography using Unmanned Aerial Vehicle (UAV). Aerial photography was conducted on January 18, 2013, which is when the serious flooding that inundated almost the entire region of Kampung Pulo. Information risk level of buildings and population resulting from this study were obtained by using GIS. The results obtained from this study can be used to develop recommendations and strategies for flood mitigation in Kampung Pulo, Jakarta. One of them is the determination of the location for vertical evacuation plan in the affected areas.


Author(s):  
S. Burgos ◽  
M. Mota ◽  
D. Noll ◽  
B. Cannelle

Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between −0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Yue Mu ◽  
Yuichiro Fujii ◽  
Daisuke Takata ◽  
Bangyou Zheng ◽  
Koji Noshita ◽  
...  

Author(s):  
A. R. Yusoff ◽  
N. Darwin ◽  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris

<p><strong>Abstract.</strong> Unmanned Aerial Vehicle (UAV) is one of the geoinformation data acquisition technologies that popularly used for slope mapping. UAV is capable to produce high resolution imageries in a short period. In order to obtained suitable results in slope mapping, specific UAV mapping factors have to be followed and the selection of the optimum Ground Control Point (GCP) and the UAV flying altitude become the most important factors. This paper presents the production of high resolution slope map using UAV technology. The research involved with the following steps, (i) preparation of field work (i.e. determination of the number of GCPs and flying altitude) and the flight mission; (ii) processing and evaluating of UAV images, and (iii) production of slope map. The research was successfully conducted at Kulim, Kedah, Malaysia as the condition of slope in that area is prone to the landslide incidences. A micro rotary wing UAV system known as DJI Phantom 4 was used for collecting the high resolution images with various flying altitudes. Due to the un-accessibility of the slope area, all the GCPs are measured from the point cloud data that was acquired from the Pheonix AL-32 LiDAR system. The analysis shows that the coordinates (X, Y and Z) accuracy is influenced by the flying altitude. As the flying altitude increases, the coordinate’s accuracy also increased. Furthermore, the results also show that the coverage slope area and number of tie point increases when the flying altitude increases. This practical study contributed to the slope work activities where the specific requirements for flying altitudes have been clearly stated.</p>


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Sign in / Sign up

Export Citation Format

Share Document