Design, Modeling and Lab Test of Electromagnetic Energy Harvester for Railway Vehicle Suspensions

Author(s):  
Yu Pan ◽  
Fengwei Liu ◽  
Ruijin Jiang ◽  
Zhiwen Tu ◽  
Lei Zuo

To enable the smart technologies, such as the GPS, suspension active and semi-active controls and electromagnetic braking system, on the railway freight vehicles, the electricity is required and in needed. In this paper, we proposed a rack-pinion based freight train suspension energy harvester with mechanical-motion-rectifier (MMR) mechanism, to harvest the energy that usually dissipated and wasted during suspension vibration. The special mechanism with one way clutches engagement and disengagement during the working period makes the harvester convert the bi-direction suspension linear motion into a generator unidirectional rotation, which improve the transmission reliability and increase the energy harvesting efficiency. Nonlinear model of the energy harvester is established in this paper to analyze the dynamic characteristic of the freight train energy harvester and bench test are carried out to experimentally characterize the proposed energy harvester. The results show that under a certain freight vehicle suspension vibration condition, the proposed energy harvester can get a peak 292W and an average 34W power, which has a much better energy harvesting performance than any other existing energy harvesting technology used for the railway vehicles. Moreover, the proposed energy harvester can reach a 70% mechanical efficiency, which shows that the MMR’s advantage in improving the energy harvesting efficiency.

Author(s):  
Ziheng Zhu ◽  
Lin Xu ◽  
Mohamed A. A. Abdelkareem ◽  
Junyi Zou ◽  
Jia Mi

Abstract With the recent energy crisis, the new energy harvesting technologies have become one of the hot spots in engineering academic research and industrial applications. By its wide range of application fields, vibration energy harvesting technologies have been gradually developed and utilized in which an efficient and stable harvester technology is one of the recent key problems. In order to improve energy harvesting efficiency and reduce energy loss caused by motor inertial commutation, many mechanical structures or hydraulic structures that convert reciprocating vibration energy into single direction rotation of motor are proposed. Although these methods can improve energy harvesting efficiency, they can have negative effects in some cases, especially in the case of vibration energy harvesting from human beings. This paper proposes a vibration harvesting mechanism with mechanical rectification filter function applied to backpack. The prototype model of the system was established in SolidWorks and imported into ADAMS. Thereafter, dynamic analyses of mechanical rectification filtering characteristics and meshing characteristics of one-way clutch were simulated in ADAMS. Based on ADAMS, parametric design analysis and its influence on the mechanical rectification characteristics were investigated. The simulation results were validated by bench test results. Simulation results is done by ADAMS and the results match well with bench test results.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Lingshuai Meng ◽  
Mohamed A. A. Abdelkareem

With the development of high-speed rail technology, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of the vehicle. Due to the selected stiffness and damping parameters, conventional passive suspensions cannot fit in with the diverse conditions of the railway. Additionally, among these vibrations contains a large amount of energy, if this vibrational energy can be recycled and used for the active suspension to control, it will be a good solution compared to the conventional passive suspensions. Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will severely impact the vehicle dynamic performance such as the ride comfort and road handling. In the past few years, engineers and researchers have done relevant researches on HESA which have shown that it has good effects and proposed several suspension energy regeneration solutions for applying to car. This paper presents a novel application of HESA into a bogie system for railway vehicles comparing to the conventional suspension systems. HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. In HESA, the high-pressure oil which is produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator to generate electricity. In this way, HESA regenerate the mechanical vibrational energy that is otherwise dissipated by the traditional shock absorber as heat energy. Because the bogie has two sets of suspension systems, a dynamic model of bogie based on AMESim is established in order to clarify the influence of the dynamic characteristics effect and the energy harvesting efficiency when installing the HESA into different sets of the bogie. Then, set the HESA model into each suspension system of the bogie and input with the corresponding characteristic excitation, the influence of the dynamic characteristics and the energy harvesting efficiency are analyzed and compared. The simulation results show that the system can effectively reduce the vibration of the carriage, while maintaining good potential to recycle vibratory energy. Based on the results of the simulation, the relationships as well as differences between the first suspension system and second suspension system have been concluded, which are useful for the design of HESA-Bogie. Moreover, comparing the energy harvesting efficiency discrepancy between the two suspension systems, the potential of energy harvesting of a novel railway vehicle bogie system with HESA has been evaluated and then the best application department has been found, which indicates the theoretical feasibilities of the HESA-bogie to improve the fuel economy.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4277 ◽  
Author(s):  
Maoying Zhou ◽  
Mohannad Al-Furjan ◽  
Ban Wang

This paper proposes and investigates a piezoelectric energy harvesting system based on the flow induced vibration of a piezoelectric composite cantilever pipe. Dynamic equations for the proposed energy harvester are derived considering the fluid-structure interaction and piezoelectric coupling vibration. Linear global stability analysis of the fluid-solid-electric coupled system is done using the numerical continuation method to find the neutrally stable vibration mode of the system. A measure of the energy harvesting efficiency of the system is proposed and analyzed. A series of simulations are conducted to throw light upon the influences of mass ratio, dimensionless electromechanical coupling, and dimensionless connected resistance upon the critical reduced velocity and the normalized energy harvesting efficiency. The results provide useful guidelines for the practical design of piezoelectric energy harvester based on fluid structure interaction and indicate some future topics to be investigated to optimize the device performance.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Bernardo Luiz R. Ribeiro ◽  
Yunxing Su ◽  
Quentin Guillaumin ◽  
Kenneth S. Breuer ◽  
Jennifer A. Franck

2016 ◽  
Author(s):  
Douglas Da Costa Ferreira ◽  
Fábio Roberto Chavarette ◽  
Jean-Marc Stephane Lafay ◽  
Paulo Rogerio Novak ◽  
Samuel Pagotto ◽  
...  

2010 ◽  
Author(s):  
S. P. Philipps ◽  
G. Peharz ◽  
R. Hoheisel ◽  
T. Hornung ◽  
N. M. Al-Abbadi ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141875587 ◽  
Author(s):  
Tao Wang ◽  
Wei Song ◽  
Shiqiang Zhu

Energy consumption has significant influence on the working time of soft robots in mobile applications. Fluidic soft actuators usually release pressurized fluid to environment in retraction motion, resulting in dissipation of considerable energy, especially when the actuators are operated frequently. This article mainly explores the potential and approaches of harvesting the energy released from the actuators. First, the strain energy and pressurized energy stored in fluidic soft actuators are modeled based on elastic mechanics. Then, taking soft fiber-reinforced bending actuators as case study, the stored energy is calculated and its parametric characteristics are presented. Finally, two energy harvesting schematics as well as dynamic models are proposed and evaluated using numerical analysis. The results show that the control performance of the energy harvesting system becomes worse because of increased damping effect and its energy harvesting efficiency is only 14.2% due to the losses of energy conversion. The energy harvesting system in pneumatic form is a little more complex. However, its control performance is close to the original system and its energy harvesting efficiency reaches about 44.1%.


2022 ◽  
Vol 891 ◽  
pp. 162040
Author(s):  
Ikhtiar Ahmad ◽  
Rashida Jafer ◽  
Syed Mustansar Abbas ◽  
Nisar Ahmad ◽  
Ata-ur-Rehman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document