Enabling Cyber-Based Learning of Product Sustainability Assessment Using Unit Manufacturing Process Analysis

Author(s):  
Kamyar Raoufi ◽  
Karl R. Haapala ◽  
Gül E. Okudan Kremer ◽  
Kyoung-Yun Kim ◽  
Carolyn E. Psenka ◽  
...  

Efforts to reduce product environmental impacts such as energy consumption and carbon footprint have received attention for many years, often driven by consumer pressure on companies to produce more environmentally friendly products. As the next generation of engineers who will take responsibility for advancing the sustainability of products, processes, and systems, engineering students need to become more familiar with the concepts of sustainable product design and manufacturing. Yet, educators are disadvantaged in training these students, and tools are deficient in assisting product sustainability assessments for manufacturing decision making by other non-experts. A manufacturing analysis module is introduced, which was developed under collaborative research titled, Constructionism in Learning: Sustainable Life Cycle Engineering (CooL:SLiCE). This CooL:SLiCE manufacturing analysis module provides an opportunity for non-expert students and engineers to investigate the impacts of product design changes on manufacturing processes and supply chain network configurations, e.g., selection of upstream processes, transportation routes, and transportation modes, from environmental responsibility perspective. One popular consumer product, a multicopter, is selected to demonstrate the module. The production of three hexacopter components are evaluated: the upper shell, lower shell, and propeller. The manufacturing analysis module enables non-experts to gain a better understanding of sustainable product design and manufacturing.

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Mohd Fahrul Hassan ◽  
Muhamad Zameri Mat Saman ◽  
Salwa Mahmood ◽  
Nik Hisyamudin Muhd Nor ◽  
Mohd Nasrull Abdol Rahman

To achieve sustainable product design, it is crucial to use sustainability assessment during the product design process. In this paper, numerous sustainability assessment methodologies in product design are reviewed. A comprehensive assessment of sustainability has been reported to present better performance for improving product sustainability. This review focused on the consideration of sustainability elements by previous researchers that have proposed integrated design tools, commercial software tools and combination both methods in supporting the methodologies. Based on this review, it can be concluded that the inclusion of sustainability performance among the assessment criteria in the design process activities is suggested as a critical point of concern which presents a challenge and is a great opportunity to develop useful guidelines or directions for industries or any product-based project so that the proposed approach will be accepted for implementation in the working environment.


Author(s):  
Kamyar Raoufi ◽  
Sriram Manoharan ◽  
Karl R. Haapala

Promoting excellence in sustainable manufacturing has emerged as a strategic mission in academia and industry. In particular, universities must prepare the next generation of engineers to contribute to the task of sustaining and improving manufacturing by providing appropriate types of sustainability education and training. However, engineering curricula are challenged in delivering educational training for assessing technical solutions from the three domains that define sustainability: economic, environmental, and social. In the research presented here, an educational framework is developed with an aim to improve student understanding of sustainable product design (PD) and manufacturing. The framework is founded on the analyze, design, develop, implement, and evaluate (ADDIE) model for instructional design. The developed framework is demonstrated using an example of a sustainable PD activity. This instructional design case study illustrates how engineering students would be able to investigate the impacts of raw materials, unit manufacturing processes, manufacturing locations, and design changes on product sustainability performance by integrating PD information and manufacturing analysis methods during the PD phase.


Author(s):  
Devdas Shetty ◽  
Claudio Campana ◽  
Lou Manzione ◽  
Suhash Ghosh

Research studies confirm that embracing sustainability in product design and manufacturing not only yields environmental improvements, but offers key business benefits. There is an increasing pressure to adopt a more sustainable approach to product design and manufacture. Organizations that are actively engaged in sustainable product design and development cite impressive levels of improvement over their poorer performing peers in product innovation, quality, safety and revenue growth alongside anticipated environmental and energy gains. Sustainability in design and manufacturing has a lot to do with “doing better with less,” and embracing a broader view of product development, and examining full lifecycle of the product and the impact that its design, manufacture, performance and disposal can have across not only on business, but on the environment and society, as well. The process of rethinking a product’s design so that it is more durable contains fewer parts and easily packaged and recycled also drives innovation and quality. The goal of sustainable product design (SPD) is to produce products and/or to provide services, which are sustainable and achieve their required functionality, meet customer requirements and are cost effective. In other words, SPD is about producing superior products and/or services that fulfil traditional criteria as well as sustainability requirements. The requirement to develop sustainable product is one of the key challenges of 21st century. This paper describes a system that identifies sustainability related performance measures for products in terms of: a) Sustainable product design by robust design. b) Sustainable design by quality of service. The first case study is on a laser based measuring instrument which supports the theory of sustainable product by robust design techniques The objective of the robust design study is to find the optimum recommended factor setting for the surface roughness analyser to minimize the variability in the readings. This instrument relies on the spread of the laser light on the work piece to determine surface roughness; therefore, the analyser’s reliability depends primarily on everything involved with the laser and its path. There are a minimum number of parts to achieve this function since the laser can scan over the work piece, substituting functionality in place of additional parts. The use of surface roughness analyser for online measurement of surface finish and continuous online monitoring and control with a feedback provides the robustness in quality and sustainability. The second case study, which is on elevator quality of service, is considered to support the theory of sustainable design by quality of service. This example shows how the design considerations are influenced and closely linked to the quality of service and maintenance. To support the theory of sustainability by quality of service, this case study examines elevator design and maintenance and recommends a new procedure based on Root Couse Analysis resulting in Elevator Condition Index (ECI). ECI is a new procedure and is applied based on original equipment reliability, projected average life cycle of key wear components, number of run cycles since maintenance was last performed on each component, cost of emergency repair vs. cost of maintenance vs. likelihood of failure. It supports service based on prognostics rather than routine service cycles. Sustainable design and manufacturing is possible if we deploy the virtual engineering tools to monitor and service manufacturing machinery so that the sustainable benefits are maintained throughout the product design cycle. The choice of a workplace structure depends on the design of the parts and lot sizes to be manufactured as well as market factors, such as the responsiveness to changes. Designers should be aware of the manufacturing consequences of their decisions because minor design changes during the early stages often prevent major problems later. As a part of product performance evaluation, the use of capability index to maintain process quality can lead to beneficial results.


Procedia CIRP ◽  
2015 ◽  
Vol 26 ◽  
pp. 99-102 ◽  
Author(s):  
Sumit Gupta ◽  
G.S. Dangayach ◽  
Amit Kumar Singh

2021 ◽  
Vol 13 (14) ◽  
pp. 7957
Author(s):  
Marco Haid ◽  
Julia N. Albrecht

This study examines sustainable tourism products in tourism destinations. Based on concepts of sustainable product design, our study proposes a framework for sustainable tourism products by adapting an existing Design for Sustainability Framework to consider and analyze the characteristics and themes of sustainable (tourism) products as well as their impact and scope. Using a pragmatic qualitative approach, 15 semi-structured interviews with destination managers from the German-speaking Alpine region formed the empirical basis of the study. The results emphasize key themes and multiple characteristics associated with sustainable tourism products in tourist destinations, addressing all sustainability components and design innovation levels. This study is the first to apply existing sustainable product design concepts to destination contexts and discuss their applicability for sustainable tourism products. For practitioners, this study provides support for the development of sustainable tourism products and contributes to a better understanding of the effects and levels of these products as well as sustainability marketing.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3469
Author(s):  
Ji Han ◽  
Pingfei Jiang ◽  
Peter R. N. Childs

Although products can contribute to ecosystems positively, they can cause negative environmental impacts throughout their life cycles, from obtaining raw material, production, and use, to end of life. It is reported that most negative environmental impacts are decided at early design phases, which suggests that the determination of product sustainability should be considered as early as possible, such as during the conceptual design stage, when it is still possible to modify the design concept. However, most of the existing concept evaluation methods or tools are focused on assessing the feasibility or creativity of the concepts generated, lacking the measurements of sustainability of concepts. The paper explores key factors related to sustainable design with regard to environmental impacts, and describes a set of objective measures of sustainable product design concept evaluation, namely, material, production, use, and end of life. The rationales of the four metrics are discussed, with corresponding measurements. A case study is conducted to demonstrate the use and effectiveness of the metrics for evaluating product design concepts. The paper is the first study to explore the measurement of product design sustainability focusing on the conceptual design stage. It can be used as a guideline to measure the level of sustainability of product design concepts to support designers in developing sustainable products. Most significantly, it urges the considerations of sustainability design aspects at early design phases, and also provides a new research direction in concept evaluation regarding sustainability.


Sign in / Sign up

Export Citation Format

Share Document