scholarly journals Gravity Compensation and Feedback of Ground Reaction Forces for Biped Balance Control

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Satoshi Ito ◽  
Shingo Nishio ◽  
Yuuki Fukumoto ◽  
Kojiro Matsushita ◽  
Minoru Sasaki

This paper considers the balance control of a biped robot under a constant external force or on a sloped ground. We have proposed a control method with feedback of the ground reaction forces and have realized adaptive posture changes that ensure the stability of the robot. However, fast responses have not been obtained because effective control is achieved by an integral feedback that accompanies a time delay necessary for error accumulation. To improve this response, here, we introduce gravity compensation in a feedforward manner. The stationary state and its stability are analyzed based on dynamic equations, and the robustness as well as the response is evaluated using computer simulations. Finally, the adaptive behaviors of the robot are confirmed by standing experiments on the slope.

Author(s):  
Lulu Gong

A motion/force control scheme was proposed to investigate biped impactless walking, which has proven to be used effectively to achieve stable walking on slopes. This paper aims to investigate the efficiency of walking stairs. Good trajectory generation and effective control method are important for operating and ensuring the stability of biped walking on stairs. Walking is illustrated by a seven-link biped with six control actuators, the number of which always equals to that of motion and force specifications. In order to avoid impacts, the specified motion of the biped and its ground reactions are controlled. Control torques, ground reaction forces and consumption energy of the biped lower limb joints are calculated for ascending stairs, walking on flat terrain and descending stairs. Three different locomotion velocities are studied in order to compare the energetic performance of the biped walking up-and-down stairs.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaokun Leng ◽  
Songhao Piao ◽  
Lin Chang ◽  
Zhicheng He ◽  
Zheng Zhu

Biped robot research has always been a research focus in the field of robot research. Among them, the motion control system, as the core content of the biped robot research, directly determines the stability of the robot walking. Traditional biped robot control methods suffer from low model accuracy, poor dynamic characteristics of motion controllers, and poor motion robustness. In order to improve the walking robustness of the biped robot, this paper solves the problem from three aspects: planning method, mathematical model, and control method, forming a robot motion control framework based on the whole-body dynamics model and quadratic planning. The robot uses divergent component of motion for trajectory planning and introduces the friction cone contact model into the control frame to improve the accuracy of the model. A complete constraint equation system can ensure that the solution of the controller meets the dynamic characteristics of the biped robot. An optimal controller is designed based on the control framework, and starting from the Lyapunov function, the convergence of the optimal controller is proved. Finally, the experimental results show that the method is robust and has certain anti-interference ability.


Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


2020 ◽  
Vol 9 (4) ◽  
pp. 1357-1363
Author(s):  
Ahmad Fahmi ◽  
Marizan Sulaiman ◽  
Indrazno Siradjuddin ◽  
I Made Wirawan ◽  
Abdul Syukor Mohamad Jaya ◽  
...  

The Segway Human Transport (HT) robot, it is dynamical self-balancing robot type. The stability control is an important thing for the Segway robot. It is an indisputable fact that Segway robot is a natural instability framework robot. The case study of the Segway robot focuses on running balance control systems. The roll, pitch, and yaw balance of this robot are obtained by estimating the Kalman Filter with a combination of the pole placement and the Linear Quadratic Regulator (LQR) control method. In our system configuration, the mathematical model of the robot will be proved by Matlab Simulink by modelling of the stabilizing control system of all state variable input. Furthermore, the implementation of this system modelled to the real-time test of the Segway robot. The expected result is by substitute the known parameters from Gyro, Accelero and both rotary encoder to initial stabilize control function, the system will respond to the zero input curve. The coordinate units of displacement response and inclination response pictures are the same. As our expected, the response of the system can reach the zero point position. 


Author(s):  
Ian Abraham ◽  
ZhuoHua Shen ◽  
Justin Seipel

Despite the neuromechanical complexity underlying animal locomotion, the steady-state center-of-mass motions and ground reaction forces of animal running can be predicted by simple spring-mass models such as the canonical spring-loaded inverted pendulum (SLIP) model. Such SLIP models have been useful for the fields of biomechanics and robotics in part because ground reaction forces are commonly measured and readily available for comparing with model predictions. To better predict the stability of running, beyond the canonical conservative SLIP model, more recent extensions have been proposed and investigated with hip actuation and linear leg damping (e.g., hip-actuated SLIP). So far, these attempts have gained improved prediction of the stability of locomotion but have led to a loss of the ability to accurately predict ground reaction forces. Unfortunately, the linear damping utilized in current models leads to an unrealistic prediction of damping force and ground reaction force with a large nonzero magnitude at touchdown (TD). Here, we develop a leg damping model that is bilinear in leg length and velocity in order to yield improved damping force and ground reaction force prediction. We compare the running ground reaction forces, small and large perturbation stability, parameter sensitivity, and energetic cost resulting from both the linear and bilinear damping models. We found that bilinear damping helps to produce more realistic, smooth vertical ground reaction forces, thus fixing the current problem with the linear damping model. Despite large changes in the damping force and power loss profile during the stance phase, the overall dynamics and energetics on a stride-to-stride basis of the two models are largely the same, implying that the integrated effect of damping over a stride is what matters most to the stability and energetics of running. Overall, this new model, an actuated SLIP model with bilinear damping, can provide significantly improved prediction of ground reaction forces as well as stability and energetics of locomotion.


2012 ◽  
Vol 09 (03) ◽  
pp. 1250018 ◽  
Author(s):  
JOÃO P. FERREIRA ◽  
MANUEL CRISÓSTOMO ◽  
A. PAULO COIMBRA

This paper introduces two new important issues to be considered in the design of the zero moment point (ZMP) trajectory of a biped robot. It was verified experimentally that in the human gait the ZMP trajectory moves along the foot in a way that it is shifted forward relative to its center. To take this into account a shift parameter is then proposed. It was also verified experimentally that in the human gait the ZMP trajectory amplitude depends on the swing time, reducing to zero for a static gait. It is then proposed a parameter to take into account this variation with the swing time of the gait. Six experiments were carried out for three different X ZMP trajectory references. In order to evaluate and compare the performance of the biped robot using the three X ZMP trajectory references two performance indexes are proposed. For the real-time balance control of this 8 link biped robot it was used an intelligent computing control technique, the Support Vector Regression (SVR). The control method uses the ZMP error and its variation as inputs and the output is the correction of the robot's ankle and torso angles, necessary for the sagittal balance of the biped robot.


2013 ◽  
Vol 25 (1) ◽  
pp. 220-231 ◽  
Author(s):  
Fariz Ali ◽  
◽  
Naoki Motoi ◽  
Kirill Van Heerden ◽  
Atsuo Kawamura

A bipedal robot should be robust and able to move in various directions on stairs. However, up to date many research studies have been focusing on walking in the up or down direction only. Therefore, a strategy to realize walking along a step is investigated. In conventional methods, CoM is moved up or down during walking in this situation. In this paper, a method named as Dual Length Linear Inverted Pendulum Method (DLLIPM) with Newton-Raphson is proposed for 3-D biped robot walking. The proposed method applies different length of pendulum at left and right legs in order to represent the CoM height. By using the proposed method, maximum impact forces are reduced. From the Ground Reaction Forces (GRF) data obtained in the simulations, the validity of the proposed method is confirmed.


2019 ◽  
Vol 31 (4) ◽  
pp. 621-628 ◽  
Author(s):  
Longchuan Li ◽  
Fumihiko Asano ◽  
Isao Tokuda ◽  
◽  

Towards improving the stability of point-foot biped robot on slippery downhill, a novel and indirect control method is introduced in this paper using active wobbling masses attached to both legs. The whole dynamics which contains walking, sliding and wobbling, can be dominated by high-frequency oscillation via entrainment effect. Stable gaits are therefore achieved by controlling only 1% of the whole system where the original passive dynamic walking fails. First, we derive the equations of dynamics and control for this indirectly controlled biped walking on slippery downhill. Second, we numerically show the possibility of improving the stability with high-frequency oscillation. We also find the main effect of wobbling motion on walking via phase-plane plot. Third, we prove that the range of stable walking with respect to frictional coefficient can be enlarged by employing suitable high-frequency oscillation via parametric study. Our method will be further applied to more general conditions in real tasks which contain different locomotion types, where the whole dynamics could be dominated by high-frequency oscillation and the phase properties of the dynamics will be positively utilized.


Sign in / Sign up

Export Citation Format

Share Document