Design of Constant-Force Mechanisms Based on Straight-Line Linkages

Author(s):  
Hsin-Ting Huang ◽  
Chin-Hsing Kuo

This paper presents two novel constant-force mechanisms (CFMs) based on Scott-Russell and Hart’s straight-line linkages with mechanical springs. By articulating either two compression springs (type C-C) or one compression spring with another one extension spring (type C-E) onto each of these two CFMs, the point(s) which trace straight-line trajectories can illustrate a constant force within the mechanism workspace. We also show that the preload of the extension spring for type C-E CFMs will not affect its constant-force property but can define the amount of the output force. The proposed concepts of CFMs are relatively simple and concise, which could be useful for the complex mechanical systems that request a constant output force. A constant-force robotic gripper is illustrated by using the proposed Scott-Russell-type CFM.

2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Yu-Ling Kuo ◽  
Chao-Chieh Lan

Abstract Constant-force mechanisms (CFMs) can produce an almost invariant output force over a limited range of input displacement. Without using additional sensor and force controller, adjustable CFMs can passively produce an adjustable constant output force to interact with the working environment. In the literature, one-dimensional CFMs have been developed for various applications. This paper presents the design of a novel CFM that can produce adjustable constant force in two dimensions. Because an adjustable constant force can be produced in each radial direction, the proposed adjustable CFM can be used in applications that require two-dimensional force regulation. In this paper, the design formulation and simulation results are presented and discussed. Equations to minimize the output force variation are given to choose the design parameters optimally. A prototype of the two-dimensional CFM is tested to demonstrate the effectiveness and accuracy of adjustable force regulation. This novel CFM is expected to be used in machines or robots to interact friendly with the environment.


Author(s):  
Alisa J. Millar ◽  
Larry L. Howell ◽  
James N. Leonard

Abstract Compliant constant-force mechanisms combine the effects of mechanical advantage and stored strain energy of flexible members to obtain constant output forces for a large range of input displacements. This paper extends and compliments previous work by accomplishing the following: i) dimensional synthesis is performed for a number of compliant constant-force mechanism configurations, ii) a simplified method of determining the magnitude of the constant output force is presented, and iii) experimental validation of the theory is addressed by reporting the results of testing three constant-force configurations. The results of i) and ii) are presented in a manner to be easily used by engineers designing such mechanisms. The results of iii) show that the mechanisms do follow a nearly constant force for a large input displacement, as predicted.


Author(s):  
Larry L. Howell ◽  
Ashok Midha ◽  
Morgan D. Murphy

Abstract Constant-force mechanisms produce a constant output force for a range of input displacements. Such mechanisms are important in applications with a varying displacement but a constant resultant force required. Constant-force mechanism designs have been limited to rigid-link mechanisms, but the design of compliant, or flexible link, constant force mechanisms could increase the number of applications by taking advantage of the unique characteristics of compliant mechanisms. Murphy (1993) developed type-synthesis theories for compliant mechanisms and applied them to generate possible configurations for compliant constant-force slider mechanisms. This paper concentrates on the dimensional synthesis of several of the resulting topologies. Optimization and the pseudo-rigid-body-model concept are employed in the design procedure. An example application as an electrical connection for use in electronic chip carriers is also illustrated.


2006 ◽  
Vol 128 (5) ◽  
pp. 1101 ◽  
Author(s):  
C. B. W. Pedersen ◽  
N. A. Fleck ◽  
G. K. Ananthasuresh

1949 ◽  
Vol 16 (3) ◽  
pp. 283-288
Author(s):  
B. E. Quinn

Abstract Two types of problems are dealt with in the paper which are involved in the design of mechanisms required to have specified dynamic characteristics: (1) Determination of applied forces required to produce specified dynamic characteristics. (2) Determination of the dynamic characteristics which will result from the application of known forces. While graphical methods may be used in the solution of type (1) problems involving more or less complex mechanical systems, they do not afford a direct approach to type (2) problems. The energy method which will be outlined can be applied in either case, although this paper will be primarily concerned with the determination of the dynamic characteristics which result when a known force is applied to a given mechanism.


Author(s):  
Jonathan S. Colton ◽  
Mark P. Ouellette

Abstract This paper presents a summary of research into the development and implementation of a domain independent, computer-based model for the conceptual design of complex mechanical systems (Ouellette, 1992). The creation of such a design model includes the integration of four major concepts: (1) The use of a graphical display for visualizing the conceptual design attributes; (2) The proper representation of the complex data and diverse knowledge required to design the system; (3) The integration of quality design methods into the conceptual design; and (4) The modeling of the conceptual design process as a mapping between functions and forms. Using the design of an automobile as a case study, a design environment was created which consisted of a distributed problem solving paradigm and a parametric graphical display. The requirements of the design problem with respect to data representation and design processing were evaluated and a process model was specified. The resulting vehicle design system consists of a tight integration between a blackboard system and a parametric design system. The completed system allows a designer to view graphical representations of the candidate conceptual designs that the blackboard system generates.


2021 ◽  
Vol 23 (1) ◽  
pp. 195-208
Author(s):  
Varun Kumar ◽  
Girish Kumar ◽  
Rajesh Kumar Singh ◽  
Umang Soni

This paper deals with modeling and analysis of complex mechanical systems that deteriorate with age. As systems age, the questions on their availability and reliability start to surface. The system is believed to suffer from internal stochastic degradation mechanism that is described as a gradual and continuous process of performance deterioration. Therefore, it becomes difficult for maintenance engineer to model such system. Semi-Markov approach is proposed to analyze the degradation of complex mechanical systems. It involves constructing states corresponding to the system functionality status and constructing kernel matrix between the states. The construction of the transition matrix takes the failure rate and repair rate into account. Once the steady-state probability of the embedded Markov chain is computed, one can compute the steady-state solution and finally, the system availability. System models based on perfect repair without opportunistic and with opportunistic maintenance have been developed and the benefits of opportunistic maintenance are quantified in terms of increased system availability. The proposed methodology is demonstrated for a two-stage reciprocating air compressor with intercooler in between, system in series configuration.


Sign in / Sign up

Export Citation Format

Share Document