scholarly journals Development of a System Model for Low-Cost, Solar-Powered Drip Irrigation Systems in the MENA Region

Author(s):  
Julia Sokol ◽  
Fiona Grant ◽  
Carolyn Sheline ◽  
Amos Winter

Drip irrigation has the potential to conserve water and increase crop yields. However, existing drip irrigation systems often require high pumping power, making them financially inaccessible to smallholder farmers. Integrating a holistic system model with a cost-optimization scheme can enable the design and implementation of low-cost, solar-powered drip irrigations systems, ultimately making this technology more cost-effective for smallholder farmers. This paper describes the algorithms comprising an integrated model of solar-powered drip irrigation systems, consisting of agronomic, hydraulic, pump, and power system modules. It also introduces a preliminary optimization scheme for the power system, which uses the system hydraulics and pump curve to select an optimal solar array and energy storage configuration that minimizes capital cost. The system model and power system optimization is applied to three case studies, and the resulting power system configurations are compared to outputs from commercially-available software for sizing solar pumping systems. The results show that the model successfully captures the nuances in crop type, local weather patterns, and hydraulic system layout between different cases. This offers a greater level of flexibility than commercially available software, which tends to have broader applications and focuses on larger systems. Future model generations will add more variables to the optimization scheme — including pump selection, variable emitter flow rates and pipe geometries — to provide a versatile design tool for cost-optimized, solar-powered drip irrigation systems.

Author(s):  
Fiona Grant ◽  
Carolyn Sheline ◽  
Susan Amrose ◽  
Elizabeth Brownell ◽  
Vinay Nangia ◽  
...  

Abstract Drip irrigation is a micro-irrigation technology that has been shown to conserve water and significantly increase crop yield. This technology could be particularly beneficial to the world’s estimated 500 million smallholder farmers, but drip systems tend to be financially inaccessible to this population. Drip systems require costly components including a pipe network, emitters, a pump and power system. Due to limited access to electricity, many smallholder farmers would require off-grid solutions. Designing reliable, low cost, off-grid drip irrigation systems for smallholder farms could significantly reduce the barrier to adoption. This paper builds on an integrated solar-powered drip irrigation model that was shown to improve upon an existing software. Field trials of the small-scale drip system were conducted on research farms in Jordan and Morocco for a full growing season. Data collected from these field trials are used to validate the hydraulics portion of the systems-level model. In addition, the insights gained from the field trials were formed into design requirements for future iterations of the model. These include optimizing for the system life cycle cost, as opposed to capital cost, the ability to simulate the system operation over a season, the capability to input a user’s irrigation schedule, incorporating locally-available components, and incorporating a system reliability constraint based on more detailed agronomic calculations.


Author(s):  
Seiji Engelkemier ◽  
Fiona Grant ◽  
Jordan Landis ◽  
Carolyn Sheline ◽  
Hannah Varner ◽  
...  

Abstract In low income countries, existing drip irrigation systems are cost prohibitive to many smallholder farmers. Companies are working to develop efficient, low-cost irrigation systems by using technologies such as positive displacement (PD) pumps and pressure compensating (PC) emitters. However, these two technologies have not been paired in an efficient and cost-effective manner. Here we describe a proof-of-concept pump control algorithm that demonstrates the feasibility of exploiting the physical relationship between the input electrical power to a PD pump and the hydraulic behavior of a system of PC emitters in order to determine the optimal pump operating point. The development and validation of this control algorithm was conducted in partnership with the Kenya-based irrigation company SunCulture. This control method is expected to reduce cost, improve system efficiency, and increase accessibility of irrigation systems to smallholder farmers.


2021 ◽  
Author(s):  
Carolyn Sheline ◽  
Fiona Grant ◽  
Amos G. Winter, V ◽  
Susan Amrose ◽  
Elizabeth Brownell ◽  
...  

2018 ◽  
Vol 144 (7) ◽  
pp. 05018003 ◽  
Author(s):  
Eric Oppong Danso ◽  
Thomas Atta-Darkwa ◽  
Finn Plauborg ◽  
Edward Benjamin Sabi ◽  
Yvonne Kugblenu-Darrah ◽  
...  

2007 ◽  
Vol 2 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Pinaki Mondal . ◽  
R.K. Biswas . ◽  
V.K. Tewari . ◽  
K. Kundu . ◽  
Manisha Basu .

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Pulkit Shamshery ◽  
Amos G. Winter

This study presents the design and validation of on-line pressure-compensating (PC) drip irrigation emitters with a substantially lower minimum compensating inlet pressure (MCIP) than commercially available products. A reduced MCIP, or activation pressure, results in a drip irrigation system that can operate at a reduced pumping pressure, has lower power and energy requirements, requires a lower initial capital cost, and facilitates solar-powered irrigation systems. The technology presented herein can help spread drip irrigation to remote regions and contribute to reducing poverty, particularly in developing countries. The activation pressures of drip emitters at three flow rates were minimized using a genetic algorithm (GA)-based optimization method coupled with a recently published fluid–structure interaction analytical model of on-line PC drip emitter performance. The optimization took into account manufacturing constraints and the need to economically retrofit existing machines to manufacture new emitters. Optimized PC drip emitter designs with flow rates of 3.3, 4.2, and 8.2 lph were validated using precision machined prototype emitters. The activation pressure for all was ≤0.2 bar, which is as low as 16.7% that of commercial products. A limited production run of injection molded 8.2 lph dripper prototypes demonstrated they could be made with conventional manufacturing techniques. These drippers had an activation pressure of 0.15 bar. A cost analysis showed that low MCIP drip emitters can reduce the cost of solar-powered drip irrigation systems by up to 40%.


Sign in / Sign up

Export Citation Format

Share Document