Investigation on Soil Wetting Patterns of Low Cost Drip Irrigation Systems Developed in India

2007 ◽  
Vol 2 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Pinaki Mondal . ◽  
R.K. Biswas . ◽  
V.K. Tewari . ◽  
K. Kundu . ◽  
Manisha Basu .
Author(s):  
Fiona Grant ◽  
Carolyn Sheline ◽  
Susan Amrose ◽  
Elizabeth Brownell ◽  
Vinay Nangia ◽  
...  

Abstract Drip irrigation is a micro-irrigation technology that has been shown to conserve water and significantly increase crop yield. This technology could be particularly beneficial to the world’s estimated 500 million smallholder farmers, but drip systems tend to be financially inaccessible to this population. Drip systems require costly components including a pipe network, emitters, a pump and power system. Due to limited access to electricity, many smallholder farmers would require off-grid solutions. Designing reliable, low cost, off-grid drip irrigation systems for smallholder farms could significantly reduce the barrier to adoption. This paper builds on an integrated solar-powered drip irrigation model that was shown to improve upon an existing software. Field trials of the small-scale drip system were conducted on research farms in Jordan and Morocco for a full growing season. Data collected from these field trials are used to validate the hydraulics portion of the systems-level model. In addition, the insights gained from the field trials were formed into design requirements for future iterations of the model. These include optimizing for the system life cycle cost, as opposed to capital cost, the ability to simulate the system operation over a season, the capability to input a user’s irrigation schedule, incorporating locally-available components, and incorporating a system reliability constraint based on more detailed agronomic calculations.


Author(s):  
Seiji Engelkemier ◽  
Fiona Grant ◽  
Jordan Landis ◽  
Carolyn Sheline ◽  
Hannah Varner ◽  
...  

Abstract In low income countries, existing drip irrigation systems are cost prohibitive to many smallholder farmers. Companies are working to develop efficient, low-cost irrigation systems by using technologies such as positive displacement (PD) pumps and pressure compensating (PC) emitters. However, these two technologies have not been paired in an efficient and cost-effective manner. Here we describe a proof-of-concept pump control algorithm that demonstrates the feasibility of exploiting the physical relationship between the input electrical power to a PD pump and the hydraulic behavior of a system of PC emitters in order to determine the optimal pump operating point. The development and validation of this control algorithm was conducted in partnership with the Kenya-based irrigation company SunCulture. This control method is expected to reduce cost, improve system efficiency, and increase accessibility of irrigation systems to smallholder farmers.


2017 ◽  
Vol 19 (2) ◽  
pp. 71-77 ◽  
Author(s):  
HA Archana ◽  
N Asoka Raja ◽  
R Mahesh ◽  
R Kalpana

A study was conducted to determine the effect of low cost drip tape irrigation system on yield and economics of sweet corn in comparison to conventional inline drip irrigation and surface irrigation systems during 2013-14 at Coimbatore, India. The treatment comprises of two drip irrigation systems with three irrigation levels viz., 75, 100 and 125% of pan evaporation (PE) from Class A Pan evaporimeter. Plant height, fresh cob length, girth, number of kernels per cob and single fresh cob weight and yield were higher at 125% PE in conventional in line drip irrigation system and it was statistically at par with drip irrigation at 125% PE in low cost drip tape irrigation system. Water saving was 36, 49 and 62% at 125, 100 and 75% PE, respectively under conventional in line drip irrigation system and drip tape irrigation system as against the surface irrigation. The cost of low cost drip tape system was 68% lower than the conventional inline drip system. The results of the research indicated that based on net income, B:C ratio and GM/TMV ratio, adoption of low cost drip tape irrigation system at 125% PE was found to be best for small and marginal farmers with substantial yield and income compared to conventional inline drip system.Bangladesh Agron. J. 2016 19(2): 71-77


Author(s):  
Julia Sokol ◽  
Fiona Grant ◽  
Carolyn Sheline ◽  
Amos Winter

Drip irrigation has the potential to conserve water and increase crop yields. However, existing drip irrigation systems often require high pumping power, making them financially inaccessible to smallholder farmers. Integrating a holistic system model with a cost-optimization scheme can enable the design and implementation of low-cost, solar-powered drip irrigations systems, ultimately making this technology more cost-effective for smallholder farmers. This paper describes the algorithms comprising an integrated model of solar-powered drip irrigation systems, consisting of agronomic, hydraulic, pump, and power system modules. It also introduces a preliminary optimization scheme for the power system, which uses the system hydraulics and pump curve to select an optimal solar array and energy storage configuration that minimizes capital cost. The system model and power system optimization is applied to three case studies, and the resulting power system configurations are compared to outputs from commercially-available software for sizing solar pumping systems. The results show that the model successfully captures the nuances in crop type, local weather patterns, and hydraulic system layout between different cases. This offers a greater level of flexibility than commercially available software, which tends to have broader applications and focuses on larger systems. Future model generations will add more variables to the optimization scheme — including pump selection, variable emitter flow rates and pipe geometries — to provide a versatile design tool for cost-optimized, solar-powered drip irrigation systems.


Author(s):  
Alison Greenlee ◽  
Timothy Murray ◽  
Victor Lesniewski ◽  
Mark Jeunnette ◽  
Amos G. Winter

The cylindrical filters presently used in <1000 m2 drip irrigation systems are frequently clogged, increasing pressure loss and lowering the flow rate through the filters. This work investigates the mechanisms for this clogging and proposes an alternative filtration design that would enable both more reliable and lower maintenance filtering. This proposed system is compatible with existing drip irrigation systems and could be made inexpensively with plastic bottle manufacturing equipment. To compare the proposed design to off-the-shelf options, a drip irrigation test setup was built to measure the pressure loss across different filters as particles accumulated. These experiments confirmed that pleated cartridge filters, with high effective surface area, incurred lower pressure losses than cylindrical filters. These tests revealed that the greatest reason for clogged performance was that filtered particles (not the cartridge filter itself) eventually restricted the flow of water through the system. This inspired the redesign of the filter housing such that the housing extended far below the filter, providing a catch basin away from the filter for the particles to settle. Fixing the filter independently of the bottom casing significantly improved the overall performance of the filtration system, reduced the maintenance requirement necessary from the user, and would enable inexpensive manufacturing via blow molding. This paper experimentally demonstrates that the cartridge filter inside the redesigned housing can filter out over 2 kg of sand while maintaining less than a .03 bar pressure drop across the filter at a flow rate of 25 l/s.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1103d-1103
Author(s):  
B. W. Roberts ◽  
C. W. O'Hern

Drip irrigation systems are used extensively by commercial vegetable producers. Such systems permit precise water placement and efficient water utilization. Emitters in drip irrigation lines can easily become clogged if water supplies contain solid particles. Most farm water is not suitable for drip irrigation unless filters are used to remove solid particles from the water. Small scale or part time vegetable producers often find the cost of conventional filter systems to be a substantial financial investment.A filter which is small, lightweight, and portable was designed, built, and tested. The system is constructed from standard hardware and plumbing materials that can be purchased for less than $50. Construction time is four hours or less. The filter system works well for small scale operations that require low flow rates of water.Specifications for construction, including a materials parts list and construction details will be presented.


Author(s):  
A. Josh Wiens ◽  
Amos G. Winter

This paper presents a novel pressure-compensating flow restrictor for low-cost/low-pressure drip irrigation systems. There are nearly one billion subsistence farmers in the developing world who lack the resources and opportunities to rise out of poverty. Irrigation is an effective development strategy for this population, enabling farmers to increase crop yields and grow more lucrative plant varieties. Unfortunately, as a large fraction of subsistence farmers live off the electrical grid, the capital cost of solar or diesel powered irrigation systems makes them unobtainable. This cost could be drastically reduced by altering drip irrigation systems to operate at a decreased pressure such that lower pumping power is required. The work presented here aims to accomplish this by designing a drip emitter that operates at 0.1 bar, 1/10 the pressure of current products, while also providing pressure-compensation to uniformly distribute flow over a field. Our proposed pressure compensating solution is inspired by the resonating nozzle of a deflating balloon. First, a reduced order model is developed to understand the physical principles which drive the cyclic collapse of the balloon nozzle. We then apply this understanding to propose a pressure compensating emitter consisting of compliant tube in series with a rigid diffuser. A scaling analysis is performed to determine the ideal geometry of the system and the reduced order model is applied to demonstrate that the proposed design is capable of pressure compensation in the required operation range. Preliminary experiments demonstrating the collapse effect are presented, along with initial work to translate the concept to a robust physical device.


Sign in / Sign up

Export Citation Format

Share Document