Comparison of Exams and Design Practica for Assessment in First Year Engineering Design Courses

Author(s):  
Hannah Nolte ◽  
Catherine Berdanier ◽  
Jessica Menold ◽  
Christopher McComb

Abstract In response to calls for engineering programs to better prepare students for future careers, many institutions offer courses with a design component to first-year engineering students. This work proposes that traditional exam-based assessments of design concepts are inadequate, and alternative forms of assessment are needed to assess student learning in design courses. This paper investigates the self-efficacy differences between a traditional exam and a two-part practicum as a mid-semester assessment for introductory engineering students enrolled in a first-year design course. Increased self-efficacy has been linked to various positive student outcomes and increased retention of underrepresented students. The practicum consisted of an in-class team design task and an out-of-class individual reflection, while the exam was a traditional, individual written exam. All students completed a pre-assessment survey and a post-assessment survey, both of which included measures of design self-efficacy. Analysis showed that the practicum increased the design self-efficacy of students more effectively than the exam. Students who identified as women had greater gains in design self-efficacy during the practicum as compared to men. Identifying as a minority subgroup student was also trending towards being a significant predictor of change in self-efficacy for the practicum. Findings suggest that a mid-semester practicum is a successful assessment of design competencies that contributes to increased first-year engineering student self-efficacy.

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Hannah Nolte ◽  
Catherine Berdanier ◽  
Jessica Menold ◽  
Christopher McComb

Abstract In response to calls for engineering programs to better prepare students for future careers, many institutions offer courses with a design component to first-year engineering students. This work proposes that traditional exam-based assessments of design concepts are inadequate, and alternative forms of assessment are needed to assess student learning in design courses. This paper investigates the self-efficacy differences between a traditional exam and a two-part practicum as a mid-semester assessment for introductory engineering students enrolled in a first-year design course. Increased self-efficacy has been linked to various positive student outcomes and increased retention of underrepresented students. The practicum consisted of an in-class team design task and an out-of-class individual reflection, while the exam was a traditional, individual written exam. All students completed a pre-assessment survey and a post-assessment survey, both of which included measures of design self-efficacy. Analysis showed that the practicum increased the design self-efficacy of students more effectively than the exam. Students who identified as women had greater gains in design self-efficacy during the practicum as compared with men. Identifying as a minority subgroup student was also trending toward being a significant predictor of change in design self-efficacy for the practicum. Findings suggest that a mid-semester practicum is a successful assessment of design competencies that contributes to increased first-year engineering student self-efficacy.


Author(s):  
Jon Michael ◽  
J Booth ◽  
Thomas E Doyle

Self-efficacy, a belief that one can achieve a certain level of attainment, is important to student retention in engineering and technology fields. Developing ways to increase self-efficacy should be a primary concern for engineering programs. Several key tasks will be investigated including (a) the importance of design projects to self-efficacy in first-year engineering, and (b) making first-year engineering students feel like engineers. A team-based “Cornerstone” design project was undertaken by first-year engineering students as part of a Design and Graphics course. Two groups of first- year engineering students were surveyed, (1) students who had completed the course and design project in first term, and (2) students who were enrolled in the second term offering of the same course, before completing the design project. The survey focused on Bandura’s four identified sources of self-efficacy: (a) Mastery experiences, (b) Vicarious experiences, (c) Social persuasions, and (d) Physiological states, as well as a fifth often added characteristic (e) Drive and motivation. Additionally, students were asked to quantify their agreement or disagreement to the statement “I feel like an Engineer.” This paper will present the results between these two groups and will be of interest to faculty involved in freshmen design.


Author(s):  
Sean Maw ◽  
Janice Miller Young ◽  
Alexis Morris

Most Canadian engineering students take a computing course in their first year that introduces them to digital computation. The Canadian Engineering Accreditation Board does not specify the language(s) that can or should be used for instruction. As a result, a variety of languages are used across Canada. This study examines which languages are used in degree-granting institutions, currently and in the recent past. It also examines why institutions have chosen the languages that they currently use. In addition to the language used in instruction, the types and hours of instruction are also analyzed. Methods of instruction and evaluation are compared, as well as the pedagogical philosophies of the different programs with respect to introductory computing. Finally, a comparison of the expected value of this course to graduates is also presented. We found a more diverse landscape for introductory computing courses than anticipated, in most respects. The guiding ethos at most institutions is skill and knowledge development, especially around problem solving in an engineering context. The methods to achieve this are quite varied, and so are the languages employed in such courses. Most programs currently use C/C++, Matlab, VB and/or Python.


Author(s):  
Rabia Khan ◽  
Cliff Whitcomb ◽  
Corina White

Systems engineering (SE) competencies are defined based on the knowledge, skills, and abilities (KSAs) necessary for a systems engineer to perform tasks related to the discipline. Proficient systems engineers are expected to be able to integrate, apply, and be assessed on these KSAs as they develop competencies through their education and training, professional development, and on-the-job experience. The research conducted by the Naval Postgraduate School assessed where SE graduate students stood as far as developing the necessary competency levels they need to be successful systems engineers. A survey methodology was used to achieve this objective. Systems engineering students enrolled in SE courses at the Naval Postgraduate School represented the population surveyed. Survey items were written with the intent to capture self-efficacy for knowledge and skill sets as a subset of the overall set of competencies required for systems engineering, namely within the SE competencies of Critical Thinking, Systems Engineering, Teamwork and Project Management. A total of four surveys were administered to two SE cohorts. Results show that self-efficacy in systems engineering can be reasonably assumed to be positively affected by a graduate level educational program. The implications of the research can be used to develop structured curriculum content, assessment, and continuous process improvement techniques related to the development of SE learning, and to develop more valid and reliable instruments for assessing what systems engineers need to learn, need to know, and need to do.


2006 ◽  
Vol 95 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Mica A. Hutchison ◽  
Deborah K. Follman ◽  
Melissa Sumpter ◽  
George M. Bodner

Author(s):  
Y. X. Zhang ◽  
C. Yang

Statics is the most fundamental component of Engineering Mechanics, and it is usually delivered in the first year in a common core course for engineering programs. The delivery of this key unit to the fresh first-year engineering students is very challenging and thus teaching pedagogies, strategies and methods should be further developed in response to the challenges in this important course which critically facilitates the transition of the students from high school to university and establishes their foundation knowledge on Engineering Mechanics. This paper reports the effective implementation of contemporary learning and teaching principles in a first-year core engineering course-Statics. The learning and teaching activities designed in this course include independent learning and collaborative learning, problem and project-based team work and peer learning, and progressive assessments. Effective teaching pedagogies, strategies and methodologies are developed on the basis of these educational principles to engage and motivate the first-year engineering students at most. The proposed methodologies are demonstrated effective in engaging a medium to large size class and the results of formal course surveys demonstrate the efficiency of these methods.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Catherine Berdanier ◽  
Jessica Menold

This paper describes the design and evaluation of a novel assessment for first-year engineering design courses that is rooted in an authentic design challenge. This approach modifies the traditional written-exam approach typically found in engineering courses, which is inherently inauthentic and cannot easily capture the exploratory nature of engineering design. Our assessment improves alignment with common learning objectives found in first-year engineering design courses and additionally prepares students for the type of case study interviews that are increasingly common for entry-level engineering jobs. To evaluate our assessment, 50 first-year students completed the engineering design self-efficacy instrument once before beginning the assessment and a second time approximately 48 hours later upon completion of a reflection assignment. In addition, students retrospectively reported their perceived change in self-efficacy during the assessment. Analysis shows that students perceived a large retrospective increase in skill level, despite only a small increase in directly measured self-efficacy. These results are analyzed in light of the Dunning-Kruger effect and we posit that the assessment helps to align students’ self-efficacy with their actual skill level. Increased alignment of self-efficacy with skill level may minimize student frustration when encountering challenging tasks in the future, potentially increasing retention of engineering students as well as facilitating the development of lifelong learning attitudes.


2020 ◽  
Author(s):  
Rachelle Reisberg ◽  
Joseph Raelin ◽  
Margaret Bailey ◽  
Jerry Hamann ◽  
David Whitman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document