Local Redesign for Additive Manufacturability of Compliant Mechanisms Using Topology Optimization

2021 ◽  
Author(s):  
Stijn Koppen ◽  
Emma Hoes ◽  
Matthijs Langelaar ◽  
Mary I. Frecker

Abstract Compliant mechanisms are crucial components in current and future high-precision applications. Topology optimization and additive manufacturing offer freedom to design complex compliant mechanisms that were impossible to realize using conventional manufacturing. Design for additive manufacturing constraints, such as the maximum overhang angle and minimum feature size, tend to drastically decrease the performance of topology optimized compliant mechanisms. It is observed that, among others, design for additive manufacturing constraints are only dominant in the flexure regions. Flexures are most sensitive to manufacturing errors, experience the highest stress levels and removal of support material carries the highest risk of failure. It is crucial to impose these constraints on the flexure regions, while in others part of the compliant mechanism design, these constraints can be relaxed. We propose to first design the global compliant mechanism layout in the full domain without imposing any design for additive manufacturing constraints. Subsequently we redesign selected refined local redesign domains with design for additive manufacturing constraints, whilst simultaneously considering the mechanism performance. The method is applied to a single-input-multi-output compliant mechanism case study, limiting the maximum overhang angle, introducing manufacturing robustness and limiting the maximum stress levels of a selected refined redesign domain. The high resolution local redesigns are detailed and accurate, without a large additional computational effort or decrease in mechanism performance. Thereto, the method proves widely applicable, computationally efficient and effective in its purpose.

Author(s):  
Jivtesh Khurana ◽  
Bradley Hanks ◽  
Mary Frecker

With growing interest in metal additive manufacturing, one area of interest for design for additive manufacturing is the ability to understand how part geometry combined with the manufacturing process will affect part performance. In addition, many researchers are pursuing design for additive manufacturing with the goal of generating designs for stiff and lightweight applications as opposed to tailored compliance. A compliant mechanism has unique advantages over traditional mechanisms but previously, complex 3D compliant mechanisms have been limited by manufacturability. Recent advances in additive manufacturing enable fabrication of more complex and 3D metal compliant mechanisms, an area of research that is relatively unexplored. In this paper, a design for additive manufacturing workflow is proposed that incorporates feedback to a designer on both the structural performance and manufacturability. Specifically, a cellular contact-aided compliant mechanism for energy absorption is used as a test problem. Insights gained from finite element simulations of the energy absorbed as well as the thermal history from an AM build simulation are used to further refine the design. Using the proposed workflow, several trends on the performance and manufacturability of the test problem are determined and used to redesign the compliant unit cell. When compared to a preliminary unit cell design, a redesigned unit cell showed decreased energy absorption capacity of only 7.8% while decreasing thermal distortion by 20%. The workflow presented provides a systematic approach to inform a designer about methods to redesign an AM part.


2020 ◽  
Vol 11 (1) ◽  
pp. 238
Author(s):  
Yun-Fei Fu ◽  
Kazem Ghabraie ◽  
Bernard Rolfe ◽  
Yanan Wang ◽  
Louis N. S. Chiu

The smooth design of self-supporting topologies has attracted great attention in the design for additive manufacturing (DfAM) field as it cannot only enhance the manufacturability of optimized designs but can obtain light-weight designs that satisfy specific performance requirements. This paper integrates Langelaar’s AM filter into the Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT) algorithm—a new element-based topology optimization method capable of forming smooth boundaries—to obtain print-ready designs without introducing post-processing methods for smoothing boundaries before fabrication and adding extra support structures during fabrication. The effects of different build orientations and critical overhang angles on self-supporting topologies are demonstrated by solving several compliance minimization (stiffness maximization) problems. In addition, a typical compliant mechanism design problem—the force inverter design—is solved to further demonstrate the effectiveness of the combination between SEMDOT and Langelaar’s AM filter.


2001 ◽  
Author(s):  
Hima Maddisetty ◽  
Mary Frecker

Abstract Piezoceramic actuators have gained widespread use due to their desirable qualities of high force, high bandwidth, and high energy density. Compliant mechanisms can be designed for maximum stroke amplification of piezoceramic actuators using topology optimization. In this paper, the mechanical efficiency and other performance metrics of such compliant mechanism/actuator systems are studied. Various definitions of efficiency and other performance metrics of actuators with amplification mechanisms from the literature are reviewed. These metrics are then applied to two compliant mechanism example problems and the effect of the stiffness of the external load is investigated.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Hong Zhou

The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.


Author(s):  
Hong Zhou ◽  
Nitin M. Dhembare

The design domain of a synthesized compliant mechanism is discretized into quadrilateral design cells in both hybrid and quadrilateral discretization models. However, quadrilateral discretization model allows for point connection between two diagonal design cells. Hybrid discretization model completely eliminates point connection by subdividing each quadrilateral design cell into triangular analysis cells and connecting any two contiguous quadrilateral design cells using four triangular analysis cells. When point connection is detected and suppressed in quadrilateral discretization, the local topology search space is dramatically reduced and slant structural members are serrated. In hybrid discretization, all potential local connection directions are utilized for topology optimization and any structural members can be smooth whether they are in the horizontal, vertical or diagonal direction. To compare the performance of hybrid and quadrilateral discretizations, the same design and analysis cells, genetic algorithm parameters, constraint violation penalties are employed for both discretization models. The advantages of hybrid discretization over quadrilateral discretization are obvious from the results of two classical synthesis examples of compliant mechanisms.


Author(s):  
Hima Maddisetty ◽  
Mary Frecker

A topology optimization method is developed to design a piezoelectric ceramic actuator together with a compliant mechanism coupling structure for dynamic applications. The objective is to maximize the mechanical efficiency with a constraint on the capacitance of the piezoceramic actuator. Examples are presented to demonstrate the effect of considering dynamic behavior compared to static behavior, and the effect of sizing the piezoceramic actuator on the optimal topology and the capacitance of the actuator element. Comparison studies are also presented to illustrate the effect of damping, external spring stiffness, and driving frequency. The optimal topology of the compliant mechanism is shown to be dependent on the driving frequency, the external spring stiffness, and if the piezoelectric actuator element is considered as design or non-design. At high driving frequencies, it was found that the dynamically optimized structure is very near resonance.


Author(s):  
Alok Sutradhar ◽  
Jaejong Park ◽  
Payam Haghighi ◽  
Jacob Kresslein ◽  
Duane Detwiler ◽  
...  

Topology optimization provides optimized solutions with complex geometries which are often not suitable for direct manufacturing without further steps or post-processing by the designer. There has been a recent progression towards linking topology optimization with additive manufacturing, which is less restrictive than traditional manufacturing methods, but the technology is still in its infancy being costly, time-consuming, and energy inefficient. For applications in automotive or aerospace industries, the traditional manufacturing processes are still preferred and utilized to a far greater extent. Adding manufacturing constraints within the topology optimization framework eliminates the additional design steps of interpreting the topology optimization result and converting it to viable manufacturable parts. Furthermore, unintended but inevitable deviations that occur during manual conversion from the topology optimized result can be avoided. In this paper, we review recent advances to integrate (traditional) manufacturing constraints in the topology optimization process. The focus is on the methods that can create manufacturable and well-defined geometries. The survey will discuss the advantages, limitations, and related challenges of manufacturability in topology optimization.


Sign in / Sign up

Export Citation Format

Share Document