Design for Additive Manufacturing of Cellular Compliant Mechanism Using Thermal History Feedback

Author(s):  
Jivtesh Khurana ◽  
Bradley Hanks ◽  
Mary Frecker

With growing interest in metal additive manufacturing, one area of interest for design for additive manufacturing is the ability to understand how part geometry combined with the manufacturing process will affect part performance. In addition, many researchers are pursuing design for additive manufacturing with the goal of generating designs for stiff and lightweight applications as opposed to tailored compliance. A compliant mechanism has unique advantages over traditional mechanisms but previously, complex 3D compliant mechanisms have been limited by manufacturability. Recent advances in additive manufacturing enable fabrication of more complex and 3D metal compliant mechanisms, an area of research that is relatively unexplored. In this paper, a design for additive manufacturing workflow is proposed that incorporates feedback to a designer on both the structural performance and manufacturability. Specifically, a cellular contact-aided compliant mechanism for energy absorption is used as a test problem. Insights gained from finite element simulations of the energy absorbed as well as the thermal history from an AM build simulation are used to further refine the design. Using the proposed workflow, several trends on the performance and manufacturability of the test problem are determined and used to redesign the compliant unit cell. When compared to a preliminary unit cell design, a redesigned unit cell showed decreased energy absorption capacity of only 7.8% while decreasing thermal distortion by 20%. The workflow presented provides a systematic approach to inform a designer about methods to redesign an AM part.

2021 ◽  
Author(s):  
Stijn Koppen ◽  
Emma Hoes ◽  
Matthijs Langelaar ◽  
Mary I. Frecker

Abstract Compliant mechanisms are crucial components in current and future high-precision applications. Topology optimization and additive manufacturing offer freedom to design complex compliant mechanisms that were impossible to realize using conventional manufacturing. Design for additive manufacturing constraints, such as the maximum overhang angle and minimum feature size, tend to drastically decrease the performance of topology optimized compliant mechanisms. It is observed that, among others, design for additive manufacturing constraints are only dominant in the flexure regions. Flexures are most sensitive to manufacturing errors, experience the highest stress levels and removal of support material carries the highest risk of failure. It is crucial to impose these constraints on the flexure regions, while in others part of the compliant mechanism design, these constraints can be relaxed. We propose to first design the global compliant mechanism layout in the full domain without imposing any design for additive manufacturing constraints. Subsequently we redesign selected refined local redesign domains with design for additive manufacturing constraints, whilst simultaneously considering the mechanism performance. The method is applied to a single-input-multi-output compliant mechanism case study, limiting the maximum overhang angle, introducing manufacturing robustness and limiting the maximum stress levels of a selected refined redesign domain. The high resolution local redesigns are detailed and accurate, without a large additional computational effort or decrease in mechanism performance. Thereto, the method proves widely applicable, computationally efficient and effective in its purpose.


2020 ◽  
Vol 11 (1) ◽  
pp. 238
Author(s):  
Yun-Fei Fu ◽  
Kazem Ghabraie ◽  
Bernard Rolfe ◽  
Yanan Wang ◽  
Louis N. S. Chiu

The smooth design of self-supporting topologies has attracted great attention in the design for additive manufacturing (DfAM) field as it cannot only enhance the manufacturability of optimized designs but can obtain light-weight designs that satisfy specific performance requirements. This paper integrates Langelaar’s AM filter into the Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT) algorithm—a new element-based topology optimization method capable of forming smooth boundaries—to obtain print-ready designs without introducing post-processing methods for smoothing boundaries before fabrication and adding extra support structures during fabrication. The effects of different build orientations and critical overhang angles on self-supporting topologies are demonstrated by solving several compliance minimization (stiffness maximization) problems. In addition, a typical compliant mechanism design problem—the force inverter design—is solved to further demonstrate the effectiveness of the combination between SEMDOT and Langelaar’s AM filter.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Punit Bandi ◽  
James P. Schmiedeler ◽  
Andrés Tovar

This work presents a novel method for designing crashworthy structures with controlled energy absorption based on the use of compliant mechanisms. This method helps in introducing flexibility at desired locations within the structure, which in turn reduces the peak force at the expense of a reasonable increase in intrusion. For this purpose, the given design domain is divided into two subdomains: flexible (FSD) and stiff (SSD) subdomains. The design in the flexible subdomain is governed by the compliant mechanism synthesis approach for which output ports are defined at the interface between the two subdomains. These output ports aid in defining potential load paths and help the user make better use of a given design space. The design in the stiff subdomain is governed by the principle of a fully stressed design for which material is distributed to achieve uniform energy distribution within the design space. Together, FSD and SSD provide for a combination of flexibility and stiffness in the structure, which is desirable for most crash applications.


Author(s):  
Matt Wallbanks ◽  
Muhammad Farhan Khan ◽  
Mahdi Bodaghi ◽  
Andrew Triantaphyllou ◽  
Ahmad Serjouei

Abstract Auxetic metamaterials exhibit an unexpected behaviour of a negative Poisson’s ratio, meaning they expand transversely when stretched longitudinally. This behaviour is generated predominantly due to the way individual elements of an auxetic lattice are structured. These structures are gaining interest in a wide variety of applications such as energy absorption, sensors, smart filters, vibration isolation and medical etc. Their potential could be further exploited by the use of additive manufacturing. Currently there is a lack of guidance on how to design these structures. This paper highlights state-of-the-art in auxetic metamaterials and its commonly used unit-cell types. It further explores the design approaches used in the literature on creating auxetic lattices for different applications and proposes, for the first time, a workflow comprising design, simulation and testing of auxetic structures. This workflow provides guidance on the design process for using auxetic metamaterials in structural applications.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


Author(s):  
Jovana Jovanova ◽  
Angela Nastevska ◽  
Mary Frecker

Cellular contact-aided compliant mechanisms (C3M) are cellular structures with integrated self-contact mechanisms, i.e. the segments can come into contact with each other during deformation. The contact changes the load path and can influence on the mechanism’s performance. Cellular contact-aided compliant mechanisms can be tailored for a specific structural application, such as energy absorption. Nickel Titanium compliant mechanisms can exploit the superelastic effect to improve performance and increase energy absorption. The potential for compliant mechanisms designed specifically for metal additive manufacturing opens the possibility of functional grading and tailoring the material properties locally for achieving overall performance. The combined effort of the geometry and the nonlinear material property increases the local compliance of the unit cell, resulting in higher energy absorption. A functionally graded 3D energy absorbing contact-aided compliant mechanisms cell with curved walls is analyzed. Functionally graded zones of higher flexibility are explored with different superelastic material properties. Introducing different moduli of elasticity as a function of the critical transformation stress results in different energy absorption. This approach can be used for tailoring the overall performance based on the application.


Author(s):  
Punit Bandi ◽  
James P. Schmiedeler ◽  
Andrés Tovar

This work presents a novel method for designing crashworthy structures with controlled energy absorption based on the use of compliant mechanisms. This method helps in introducing flexibility at desired locations within the structure, which in turn reduces the peak force at the expense of a reasonable increase in intrusion. For this purpose, the given design domain is divided into two subdomains: flexible (FSD) and stiff (SSD) subdomains. The design in the flexible subdomain is governed by the compliant mechanism synthesis approach for which output ports are defined at the interface between the two subdomains. These output ports aid in defining potential load paths and help the user make better use of a given design space. The design in the stiff subdomain is governed by the principle of a fully-stressed design for which material is distributed to achieve uniform energy distribution within the design space. Together, FSD and SSD provide for a combination of flexibility and stiffness in the structure, which is desirable for most crash applications.


2021 ◽  
pp. 251659842110154
Author(s):  
Ashish Kumar Mishra ◽  
Arvind Kumar

The infrastructure safety and response to the natural or man-caused calamities has always been a top consideration for any modern project. Impact energy absorption is one such area where advanced measures are being adopted to prevent any damage to the infrastructure from any impact caused by vehicles or other elements. Honeycomb structures have been primarily used in such high impact energy absorption applications. With the advent of modern additive manufacturing practices, drastic modifications to the simple honeycombs generally used are possible, thus expanding the reach and capability of these structures. In this article, in-plane uniaxial compression performance of hybrid and hierarchical hexagonal honeycombs has been studied in the context of strain energy absorption for in-plane impact such as the case of vehicle collision to the pillars of flyover or bridges. The polylactic acid (PLA) filament has been used to manufacture the honeycombs through fused deposition modeling (FDM) additive manufacturing technique. Simple hexagonal honeycombs have been studied first at low deformation speed to understand the deformation mechanics under uniaxial compression and its dependence on the unit cell dimensions and cell wall thickness. The effect of transition to the hybrid and hierarchical hexagonal honeycombs on the compression deformation has been highlighted next. While the hierarchical structures show better energy absorption capabilities and plateau stress, the hybrid hexagonal honeycombs show their high loadresistance. Dependence of the mechanical performance of such structures on the unit cell dimensions, orientation and wall thickness has also been examined through detailed experimental analysis.


Author(s):  
Scott Hill ◽  
Stephen Canfield

There is a significant rise in the design of robots performing ever-more complicated tasks. This has motivated more-anthropomorphic grasping hands for these robots. These hands or grippers are complex machines requiring numerous joints to provide high mobility within a relatively small device. Compliant mechanisms and grippers based on compliant joints provide a viable approach to design improved grippers. The use of compliant joints in the design of a hand yields a number of features that can potentially benefit the design; it allows for more lifelike mobility and can eliminate the need for traditional bearings that yield high contact stresses. This allows for much more variety in material choices. The freedom of choosing from a wider range of materials provides many benefits. For example, plastics can provide softer finger members, improved gripping characteristics and components that are less stiff, making them inherently safer for systems that operate in proximity to people. They can provide the flexibility to more naturally conform to the contour of a particular object when grasping it and reduce the necessary gripping forces to achieve reliable operation. Additionally, a solid-state design compliant mechanism design allows more freedom in designing mechanisms that will be constructed for high mobility and operating in a small space. This approach is further enhanced by the increased availability of additive manufacturing tools that enables ready implementation of compliant mechanism designs with almost any topology. This paper will examine the application additive manufacturing tools to create an anthropomorphic gripper based on compliant mechanism components. The primary contribution of this paper is the empirical evaluation of a set of compliant joints for use as the fingers in an anthropomorphic robotic hand produced using additive manufacturing. Three compliant joints will be considered: the simple straight-axis flexural pivot, cross-axis flexural pivot, and leaf-type isosceles-trapezoidal flexural pivot. Each joint type has demonstrated characteristics that may be suitable for fingers in gripping mechanism and are readily suited to be manufactured using low-cost fused deposition modeling techniques that allow for quick and low-cost production. Further, three materials are evaluated for application as the build material of each compliant joint individually and as a complete solid-state anthropomorphic gripper. These materials are: acrylonitrile butadiene styrene (ABS), Nylon 6, and thermoplastic polyurethane (TPU). Each joint and each material option is compared on the basis of their feasibility for rapid prototyping and suitability for substitution of the interphalangeal joints of the human hand. Deflection tests and finite element analysis are used to gather the empirical data for comparison. An evaluation of the tests is provided to determine which compliant joints are well suited for this application. The paper will also consider the as-built material characteristics relative to their application as gripper elements and will compare and contrast the suitability and any impact on the empirical testing and design. This work will provide information on the combination of joint topology, material and manufacturing processes and can be used to inform the design of soft or highly compliant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document