In-Situ Observation Selection for Quality Management in Metal Additive Manufacturing

2021 ◽  
Author(s):  
Byeong-Min Roh ◽  
Soundar R. T. Kumara ◽  
Hui Yang ◽  
Timothy W. Simpson ◽  
Paul Witherell ◽  
...  

Abstract Metal additive manufacturing (MAM) provides a larger design space with accompanying manufacturability than traditional manufacturing. Recently, much research has focused on simulating the MAM process with regards to part geometry, porosity, and microstructure properties. Despite continued advances, MAM processes have many variables that are not well understood with respect to their effect on the part quality. With the common use of in-situ sensors — such as CMOS cameras and infrared cameras — numerous, real-time datasets can be captured and analyzed for monitoring both the process and the part. However, currently, real-time data predominantly focuses on the build failure and process anomalies by capturing the printing defects (cracks/peel-off). A large amount of data — such as melt pool geometries and temperature gradients — are just beginning to be explored, along with their connections to final part quality. Towards investigating these connections, in this paper we propose models that capture numerous sensor capabilities and associate them with the corresponding, real-time, physical phenomena. These sensor models lay the foundation for a comprehensive, knowledge framework that forms the basis for quality monitoring and management of MAM process outcomes. Using our previously developed process ontology model [1–3], which describes the relationship between process variables and process outcomes, we can discover the relationship between the real-time, physical phenomena and the deviations in the targeted, build quality. For example, statistically significant sensor data that predicts deviations from targeted process qualities can be detected and used to control the process parameters. Case studies that scope the physical phenomena and sensor data are provided for verifying the effectiveness and efficiency of the proposed qualification and certification models.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5516
Author(s):  
Myoung-Pyo Hong ◽  
Young-Suk Kim

Metal additive manufacturing (AM) is a low-cost, high-efficiency functional mold manufacturing technology. However, when the functional section of the mold or part is not a partial area, and large-area additive processing of high-hardness metal is required, cracks occur frequently in AM and substrate materials owing to thermal stress and the accumulation of residual stresses. Hence, research on residual stress reduction technologies is required. In this study, we investigated the effect of reducing residual stress due to thermal deviation reduction using a real-time heating device as well as changes in laser power in the AM process for both high-hardness cold and hot work mold steel. The residual stress was measured using an X-ray stress diffraction device before and after AM. Compared to the AM processing conditions at room temperature (25 °C), residual stress decreased by 57% when the thermal deviation was reduced. The microstructures and mechanical properties of AM specimens manufactured under room-temperature and real-time preheating and heating conditions were analyzed using an optical microscope. Qualitative evaluation of the effect of reducing residual stress, which was quantitatively verified in a small specimen, confirmed that the residual stress decreased for a large-area curved specimen in which concentrated stress was generated during AM processing.


2018 ◽  
Author(s):  
Jacob Alldredge ◽  
John Slotwinski ◽  
Steven Storck ◽  
Sam Kim ◽  
Arnold Goldberg ◽  
...  

2019 ◽  
Vol 25 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Binbin Zhang ◽  
Prakhar Jaiswal ◽  
Rahul Rai ◽  
Paul Guerrier ◽  
George Baggs

Purpose Part quality inspection is playing a critical role in the metal additive manufacturing (AM) industry. It produces a part quality analysis report which can be adopted to further improve the overall part quality. However, the part quality inspection process puts heavy reliance on the engineer’s background and experience. This manual process suffers from both low efficiency and potential errors and, therefore, cannot meet the requirement of real-time detection. The purpose of this paper is to look into a deep neural network, Convolutional Neural Network (CNN), towards a robust method for online monitoring of AM parts. Design/methodology/approach The proposed online monitoring method relies on a deep CNN that takes a real metal AM part’s images as inputs and the part quality categories as network outputs. The authors validate the efficacy of the proposed methodology by recognizing the “beautiful-weld” category from material CoCrMo top surface images. The images of “beautiful-weld” parts that show even hatch lines and appropriate overlaps indicate a good quality of an AM part. Findings The classification accuracy of the developed method using limited information of a small local block of an image is 82 per cent. The classification accuracy using the full image and the ensemble of model outputs is 100 per cent. Originality/value A real-world data set of high resolution images of ASTM F75 I CoCrMo-based three-dimensional printed parts (Top surface images with magnification 63×) annotated with categories labels. Development of a CNN-based classification model for the supervised learning task of recognizing a “beautiful-weld” AM parts. The classification accuracy using the full image and the ensemble of model outputs is 100 per cent.


2016 ◽  
Vol 95 ◽  
pp. 431-445 ◽  
Author(s):  
Sarah K. Everton ◽  
Matthias Hirsch ◽  
Petros Stravroulakis ◽  
Richard K. Leach ◽  
Adam T. Clare

Sign in / Sign up

Export Citation Format

Share Document