Dwelling on the Connection Between SO(3) and Rotation Matrices in Rigid Multibody Dynamics – Part 2: Comparison Against Formulations Using Euler Parameters or Euler Angles

2021 ◽  
Author(s):  
Jay Taves ◽  
Alexandra Kissel ◽  
Dan Negrut

Abstract We compare three solution approaches that use the index 3 set of differential algebraic equations (DAEs) to solve the constrained multibody dynamics problem through straight discretization via an implicit time integrator. The first approach is described in a companion paper and dwells on the connection between the orientation matrix and the SO(3) group. Its salient point is that the orientation matrix A is a problem unknown, directly computed without resorting to the use of other position-level generalized coordinates such as Euler angles or Euler parameters. The second approach employs Euler angles as part of the position-level generalized coordinates, and uses them to subsequently evaluate the orientation matrix A. The third approach replaces the Euler angles with Euler parameters (quaternions). The numerical integration method of choice in this contribution is first order implicit Euler. We report a similar number of iterations for convergence for all solution implementations (called rA, rε, and rp); we also observed an approximately twofold speedup of rA over rp and rε. The tests were carried out in conjunction with three models: simple pendulum, slider crank, and four-link mechanism. These simulation results were obtained using two Python simulation engines that were developed independently as part of this formulation comparison undertaking. The codes are available in a GitHub public repository and were developed to provide two different perspectives on the formulation performance issue. The improvements in simulation speed are traced back to a simpler form of the equations of motion and more concise Jacobians that enter the numerical solution. It remains to investigate whether these speed gains carry to higher order integration formulas, where the underlying Lie-group structure of SO(3) brings additional complexity in the rA solution.

Author(s):  
Dan Negrut ◽  
Edward J. Haug

Abstract Three methods for the state-space based implicit integration of differential-algebraic equations of multibody dynamics are summarized and numerically compared. In the state-space approach, the time evolution of a mechanical system is characterized using a number of generalized coordinates equal with the number of degrees of freedom of the system. In this paper these independent generalized coordinates are a subset of the Cartesian position coordinates and orientation Euler parameters of body centroidal reference frames. Depending on the method, the independent generalized coordinates are implicitly integrated and dependent quantities (including Lagrange multipliers) are determined to satisfy constraint equations at position, velocity, and acceleration levels. Five computational algorithms based on the proposed methods are used to simulate the motion of a stiff 14-body vehicle model. Results show that the proposed methods deal effectively with challenges posed by stiff mechanical system simulation. A comparison with a state-space based explicit algorithm for the simulation of the same model indicates a speed-up of approximately two orders of magnitude.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Author(s):  
Edward J. Haug ◽  
Mirela Iancu ◽  
Dan Negrut

Abstract An implicit numerical integration approach, based on generalized coordinate partitioning of the descriptor form of the differential-algebraic equations of motion of multibody dynamics, is presented. This approach is illustrated for simulation of stiff mechanical systems using the well known Newmark integration method from structural dynamics. Second order Newmark integration formulas are used to define independent generalized coordinates and their first time derivative as functions of independent accelerations. The latter are determined as the solution of discretized equations obtained using the descriptor form of the equations of motion. Dependent variables in the formulation, including Lagrange multipliers, are determined to satisfy all the kinematic and kinetic equations of multibody dynamics. The approach is illustrated by solving the constrained equations of motion for mechanical systems that exhibit stiff behavior. Results show that the approach is robust and has the capability to integrate differential-algebraic equations of motion for stiff multibody dynamic systems.


Author(s):  
André Laulusa ◽  
Olivier A. Bauchau

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: The sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential-algebraic equations in the presence of holonomic constraints, are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


Author(s):  
Olivier A. Bauchau ◽  
Andre´ Laulusa

A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: the sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential algebraic equations are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. Finally, alternative approaches to dealing with high index differential algebraic equations, based on index reduction techniques, are reviewed and discussed. Constraint violation stabilization techniques that have been developed to control constraint drift are also reviewed. These techniques are used in conjunction with algorithms that do not exactly enforce the constraints. Control theory forms the basis for a number of these methods. Penalty based techniques have also been developed, but the augmented Lagrangian formulation presents a more solid theoretical foundation. In contrast to constraint violation stabilization techniques, constraint violation elimination techniques enforce exact satisfaction of the constraints, at least to machine accuracy. Finally, as the finite element method has gained popularity for the solution of multibody systems, new techniques for the enforcement of constraints has been developed in that framework. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.


1985 ◽  
Vol 107 (1) ◽  
pp. 82-87 ◽  
Author(s):  
N. K. Mani ◽  
E. J. Haug ◽  
K. E. Atkinson

A singular value decomposition method for efficient solution of mixed differential-algebraic equations of motion of mechanical systems is developed. Differential equations of motion are written in terms of a maximal set of Cartesian generalized coordinates that are related through nonlinear algebraic constraint equations. Singular value decomposition of the constraint Jacobian matrix is used to define a new set of generalized coordinates that are partitioned into optimal independent and dependent sets. Integration of only independent generalized coordinates generates all system information. A numerical example is presented to demonstrate effectiveness of the method.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado

The dynamics equations of multibody systems are often expressed in the form of a system of highly nonlinear Differential Algebraic Equations (DAEs). Some applications of multibody dynamics, however, require a linear expression of the equations of motion. Such is the case of the plant representations demanded by a wide variety of control algorithms and the system models needed by state estimators like Kalman filters. The choice of generalized coordinates used to describe a mechanical system greatly influences the behavior of the resultant linearized models and the way in which they convey information about the original system dynamics. Several approaches to arrive at the linearized dynamics equations have been proposed in the literature. In this work, these were categorized into three major groups, defined by the way in which the kinematic constraints are handled. The properties of each approach and the differences between them were studied through the linearization of the dynamics of a simple example with a method representative of each class.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


Author(s):  
Martin M. Tong

Numerical solution of the dynamics equations of a flexible multibody system as represented by Hamilton’s canonical equations requires that its generalized velocities q˙ be solved from the generalized momenta p. The relation between them is p = J(q)q˙, where J is the system mass matrix and q is the generalized coordinates. This paper presents the dynamics equations for a generic flexible multibody system as represented by p˙ and gives emphasis to a systematic way of constructing the matrix J for solving q˙. The mass matrix is shown to be separable into four submatrices Jrr, Jrf, Jfr and Jff relating the joint momenta and flexible body mementa to the joint coordinate rates and the flexible body deformation coordinate rates. Explicit formulas are given for these submatrices. The equations of motion presented here lend insight to the structure of the flexible multibody dynamics equations. They are also a versatile alternative to the acceleration-based dynamics equations for modeling mechanical systems.


Author(s):  
H. Ren ◽  
W. D. Zhu

A spatial discretization and substructure method is developed to calculate the dynamic responses of one-dimensional systems, which consist of length-variant distributed-parameter components such as strings, rods, and beams, and lumped-parameter components such as point masses and rigid bodies. The dependent variable, such as the displacement, of a distributed-parameter component is decomposed into boundary-induced terms and internal terms. The boundary-induced terms are interpolated from the boundary motions, and the internal terms are approximated by an expansion of trial functions that satisfy the corresponding homogeneous boundary conditions. All the matching conditions at the interfaces of the components are satisfied, and the expansions of the dependent variables of the distributed-parameter components absolutely and uniformly converge. The spatial derivatives of the dependent variables, which are related to the internal forces/moments, such as the axial forces, bending moments, and shear forces, can be accurately calculated. Assembling the component equations and the geometric matching conditions that arise from the continuity relations leads to a system of differential algebraic equations (DAEs). When some matching conditions are linear algebraic equations, some generalized coordinates can be represented by others so that the number of the generalized coordinates can be reduced. The methodology is applied to moving elevator cable-car systems in Part II of this work.


Sign in / Sign up

Export Citation Format

Share Document