Transient Response of Distributed Parameter Systems
Abstract A semi-analytic method is presented for the analysis of transient response of distributed parameter systems which are consist of one dimensional subsystems. The system is first divided into one dimensional sub-systems. Within each subsystem, replacing differentials on time t by finite difference, the governing partial differential equations are reduced to difference-differential equations. The solution of derived ordinary differential equations is obtained in an exact and closed form by distributed transfer function method and represented in nodal displacement parameters. Assemling global equilibrium equations at each nodes according to displacement continuity and force equilibrium requirements gives simutaneous linear algebraic equations. Numerical results are illustrated and compared with that of finite element method.