Enhancement of Free Convection From Horizontal-Base Straight-Fin Heat Sink by Partial Shrouding

Author(s):  
Dileep V. Nair

Abstract This work presents a simple method to improve natural convection heat transfer performance of horizontal-base straight-fin heat sink by adding partial shroud plates on top of the heat sink at both ends. Experiments are conducted in conjunction with a detailed three-dimensional (3D) computational study. The numerical model is validated using experimental results. With partial shrouding, the modification and effective utilization of airflow surrounding the heat sink leads to significant heat transfer enhancement. The installation of shroud plates effectively improves the mass flowrate of air admitted into the fin channel. Further, the airflow drawn above the heat sink dissipates heat from the upper surface of the shroud plate. There is also a significant heat dissipation from the lower surface of the shroud plate which is exposed to cold air drawn from the side-end of the heat sink. The heat transfer from the existing optimal conventional heat sink is improved by 17% with the introduction of shroud plates. An optimal width of the shroud plate is identified to exist for the maximum heat transfer. The percentage enhancement in heat transfer achieved by partial shrouding increases with a decrease in the fin height and with an increase in the fin spacing. The proposed compact heat sink design would be of application in enhancing passive heat dissipation from light-emitting diode (LED) lights and other electronic devices, especially when size constraints exist.

Author(s):  
Fernando Cano-Banda ◽  
Ana Gallardo-Gutierrez ◽  
Jesus Garcia-Gonzalez ◽  
Abel Hernandez-Guerrero ◽  
Luis Luviano-Ortiz

A radial design of a passive heat sink for cooling LED illumination devices is analyzed numerically in order to identify the geometric shape that promotes better heat dissipation rates. Natural convection with the surrounding is considered during the operation of the heat sink. Due to the fact that natural convection is the main mechanism of heat transfer, the shape of the heat sink has a high influence in the heat dissipated. An analysis of the influence of different parameters of a heat sink is conducted in the presented study. The radial heat sink under analysis consists in a flat disc with rectangular fins on it, and the fins are distributed with a radial longitudinal orientation in a circular row arrangement. The number of rows can vary but there is a constant relation of two times the number of fins between the number of fins in an inner row and the next outer row. In order to find a correct configuration to improve the dissipation of heat, parameters like the number of fins, the length of the fins and the separation between fins are studied. The average Nusselt number and thermal resistance for each geometric configuration are compared. The output analysis provides the best shape for a maximum heat transfer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2021 ◽  
Vol 11 (14) ◽  
pp. 6511
Author(s):  
Alessandro Quintino ◽  
Marta Cianfrini ◽  
Ivano Petracci ◽  
Vincenzo Andrea Spena ◽  
Massimo Corcione

Buoyancy-induced convection from a pair of staggered heated vertical plates suspended in free air is studied numerically with the main scope to investigate the basic heat and momentum transfer features and to determine in what measure any independent variable affects the thermal performance of each plate and both plates. A computational code based on the SIMPLE-C algorithm for pressure-velocity coupling is used to solve the system of the governing conservation equations of mass, momentum and energy. Numerical simulations are carried out for different values of the Rayleigh number based on the plate length, as well as of the horizontal separation distance between the plates and their vertical alignment, which are both normalized by the plate length. It is observed that an optimal separation distance between the plates for the maximum heat transfer rate related to the Rayleigh number and the vertical alignment of the plates does exist. Based on the results obtained, suitable dimensionless heat transfer correlations are developed for each plate and for the entire system.


1980 ◽  
Vol 102 (2) ◽  
pp. 215-220 ◽  
Author(s):  
E. M. Sparrow ◽  
C. Prakash

An analysis has been performed to determine whether, in natural convection, a staggered array of discrete vertical plates yields enhanced heat transfer compared with an array of continuous parallel vertical plates having the same surface area. The heat transfer results were obtained by numerically solving the equations of mass, momentum, and energy for the two types of configurations. It was found that the use of discrete plates gives rise to heat transfer enhancement when the parameter (Dh/H)Ra > ∼2 × 103 (Dh = hydraulic diameter of flow passage, H = overall system height). The extent of the enhancement is increased by use of numerous shorter plates, by larger transverse interplate spacing, and by relatively short system heights. For the parameter ranges investigated, the maximum heat transfer enhancement, relative to the parallel plate case, was a factor of two. The general degree of enhancement compares favorably with that which has been obtained in forced convection systems.


1970 ◽  
Vol 92 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Charles D. Jones ◽  
Lester F. Smith

Experimental average heat-transfer coefficients for free-convection cooling of arrays of isothermal fins on horizontal surfaces over a wider range of spacings than previously available are reported. A simplified correlation is presented and a previously available correlation is questioned. An optimum arrangement for maximum heat transfer and a preliminary design method are suggested, including weight considerations.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
R. Karvinen ◽  
T. Karvinen

A method and practical results are presented for finding the geometries of fixed volume plate fins for maximizing dissipated heat flux. The heat transfer theory used in optimization is based on approximate analytical solutions of conjugated heat transfer, which couple conduction in the fin and convection from the fluid. Nondimensional variables have been found that contain thermal and geometrical properties of the fins and the flow, and these variables have a fixed value at the optimum point. The values are given for rectangular, convex parabolic, triangular, and concave parabolic fin shapes for natural and forced convection including laminar and turbulent boundary layers. An essential conclusion is that it is not necessary to evaluate the convection heat transfer coefficients because convection is already included in these variables when the flow type is specified. Easy-to-use design rules are presented for finding the geometries of fixed volume fins that give the maximum heat transfer. A comparison between the heat transfer capacities of different fins is also discussed.


2015 ◽  
Vol 813-814 ◽  
pp. 707-712
Author(s):  
Anwesha Panigrahi ◽  
D.P. Mishra ◽  
Deepak Kumar

The present numerical study deals with the natural convection heat transfer on the surface of a vertical cylinder with external longitudinal fins. The aim of the study was to determine the effects of geometric parameters like fin height, fin number and fin shape on the heat transfer and thus obtain the optimum parameters that will maximize the rate of heat transfer have been discussed. The numerical investigation consists of an aluminium cylinder of length 1m and diameter 0.07m with air as the working fluid. It has been seen from the numerical investigation that the heat transfer increases with fin height. It is also observed that there exists optimum fin number for maximum heat transfer. Keeping the fin number, fin height and volume fixed, it was found that the heat transfer is maximum for rectangular shaped fin.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Dong Wang ◽  
Jin-Hui Liu ◽  
Xing Zhang ◽  
Tian-Yi Li ◽  
Ru-Fan Zhang ◽  
...  

Applications of carbon nanotube (CNT) and graphene in thermal management have recently attracted significant attention. However, the lack of efficient prediction formula for heat transfer coefficient between nanomaterials and gas environment limits the further development of this technique. In this work, a kinetic model has been established to predict the heat transfer coefficient of an individual CNT in gas environment. The heat dissipation around the CNT is governed by molecular collisions, and outside the collision layer, the heat conduction is dominant. At nanoscales, the natural convection can be neglected. In order to describe the intermolecular collisions around the CNT quantitatively, a correction factor 1/24 is introduced and agrees well with the experimental observation. The prediction of the present model is in good agreement with our experimental results in free molecular regime. Further, a maximum heat transfer coefficient occurs at a critical diameter of several nanometers, providing guidelines on the practical design of CNT-based heat spreaders.


Author(s):  
Mohammad Reza Shaeri ◽  
Bradley Richard ◽  
Richard Bonner

Cooling performances of perforated-finned heat sinks (PFHS) are investigated in the laminar forced convection heat transfer mode, through detailed experiments. Perforations like windows with square cross sections are placed on the lateral surfaces of the fins. Cooling performances are evaluated due to changes in both porosities and perforation sizes. Thermal characteristics are reported based on pumping power, in order to provide more practical insight about performances of PFHSs in real applications. It is found that at a constant perforation size, there is an optimum porosity that results in the largest heat transfer coefficient. For a fixed porosity, increasing the number of perforations (reducing the perforation size) results in an enhancement of heat transfer rate due to repeated interruption of the thermal boundary layer. The opposite trend is observed for PFHSs with larger perforation sizes. This indicates that there is an optimum perforation size and distance between perforations in order to achieve the maximum heat transfer coefficients at a constant porosity. Also, a PFHS results in a smaller temperature non-uniformity across the heat sink base, as well as a more rapid reduction in temperature non-uniformity on the heat sink base by increasing pumping power. In addition, the advantage of a PFHS to reduce the overall weight of the cooling system is incorporated into thermal characteristics of the heat sinks, and demonstrated by the mass specific heat transfer coefficient.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3129-3141
Author(s):  
Senthil Pongiannan ◽  
Velraj Ramalingam ◽  
Latha Nagendran

The high power density and compactness of the next generation electronic devices necessitate efficient and effective cooling methods for heat dissipation in order to maintain the temperature at an acceptable safety level. In the present work, aluminum nanocoating was employed in a heat sink to study the heat transfer performance under natural-convection conditions. The nanocoating was achieved using an electron beam method while the characteristics of nanocoated surfaces were analysed using SEM, an energy dispersive X-ray spectroscopy, surface roughness profilometry equipment and by X-ray diffraction techniques. The heat dissipation from heat sink with and without nanocoating under natural-convection has been experimentally studied at different controllable surrounding temperatures. A uniform increase in the surface roughness by the nanocoating was seen in all cases. The conclusion from several experimental results was that the effect of nanocoating in augmenting the heat transfer is more pronounced only when there is a sufficient temperature driving potential.


Sign in / Sign up

Export Citation Format

Share Document