scholarly journals Strain Sensing With Piezoelectric Zinc Oxide Thin Films for Vibration Suppression in Hard Disk Drives

Author(s):  
Sarah Felix ◽  
Stanley Kon ◽  
Jianbin Nie ◽  
Roberto Horowitz

This paper describes the integration of thin film ZnO strain sensors onto hard disk drive suspensions for improved vibration suppression for tracking control. Sensor location was designed using an efficient optimization methodology based on linear quadratic gaussian (LQG) control. Sensors were fabricated directly onto steel wafers that were subsequently made into instrumented suspensions. Prototype instrumented suspensions were installed into commercial hard drives and tested. For the first time, a sensing signal was successfully obtained while the suspension was flying on a disk as in normal drive operation. Preliminary models were identified from experimental transfer functions. Nominal H2 control simulations demonstrated improved vibration suppression as a result of both the better resolution and higher sensing rate provided by the sensors.

Author(s):  
Omid Bagherieh ◽  
Behrooz Shahsavari ◽  
Roberto Horowitz

In hard disk drive (HDD) magnetic recording bit patterned media (BPM), data are written in predetermined paths. The deviation of these paths from the perfect circle is categorized as repeatable run-out (RRO) which needs to be tracked. An adaptive RRO following algorithm was developed in [1,2] in order to track the RRO. This algorithm uses models of the closed-loop sensitivity transfer functions, from the feedforward injection points to position error signal (PES), to estimate the feedforward control actions that are needed to track the RRO. The phase difference between these models and the actual transfer functions must be less than 90 degrees, in order to guarantee the convergence of the adaptive RRO following algorithm. The dual-stage actuators’ gains and resonance modes are affected by temperature variations, which in turn affect all closed loop sensitivity transfer functions. As a consequence, the 90-degree criteria may be violated unless these transfer functions are periodically updated. In this paper, the coprime factorizations method has been used to factorize and identify the uncertain part of the model instead of identifying the entire transfer function of the model. Experimental results conducted on a hard disk drive equipped with dual-stage actuation, confirm the effectiveness of the proposed estimation algorithm.


Author(s):  
Shou-Mo Zhang ◽  
Cuong-C. Vu ◽  
Qun-Yang Li ◽  
Norio Tagawa ◽  
Quan-Shui Zheng

Reduction of head-media spacing (HMS) keeps crucial during the increase of areal density of hard disk drives (HDD). The design of hard disk drive with a superlubric interface is reported with two schemes for HDI design to realize superlubricity. For the first scheme, the DLC layer is kept on the disk while removing the lubricant layer. The DLC layer on the transducer is replaced by graphene-like layer. The direct contact between head and disk could reduce the HMS to about 2.3 nm. For the second scheme, the DLC layer on disk is further replaced by graphene and the HMS could be reduced to below 1 nm. For the first scheme, the basic proof of concept experiments are conducted using micro-scale graphite island samples. Ultralow COF, with the average of 0.0344 on the interface of single crystalline graphite surface and DLC substrate is demonstrated by AFM. What’s more, the temperature dependence of friction between single crystalline graphite and DLC is measured by micro-force sensor mounted on micro-manipulator. The results show that heating helps to significantly decrease the friction. Desorption of contaminants along the interface is speculated to be the key mechanism for temperature dependence of friction. This work provides the concept of large-scale superlubricity relevant in HDD applications, which could be a promising technology to ultimately reduce HMS for future HDI development.


Author(s):  
Omid Bagherieh ◽  
Prateek Shah ◽  
Roberto Horowitz

A data driven control design approach in the frequency domain is used to design track following feedback controllers for dual-stage hard disk drives using multiple data measurements. The advantage of the data driven approach over model based approach is that, in the former approach the controllers are directly designed from frequency responses of the plant, hence avoiding any model mismatch. The feedback controller is considered to have a Sensitivity Decoupling Structure. The data driven approach utilizes H∞ and H2 norms as the control objectives. The H∞ norm is used to shape the closed loop transfer functions and ensure closed loop stability. The H2 norm is used to constrain and/or minimize the variance of the relevant signals in time domain. The control objectives are posed as a locally convex optimization problem. Two design strategies for the dual-stage hard disk drive are presented.


Author(s):  
Jianbin Nie ◽  
Roberto Horowitz

This paper discusses the design and implementation of two track-following controllers for dual-stage hard disk drive servo systems. The first controller is designed by combining an outer loop sensitivity-decoupling (SD) controller with an inner loop disturbance observer (DOB). The second is designed by combining mixed H2/H∞ synthesis techniques with an add-on integral action. The designed controllers were implemented and evaluated on a disk drive with a PZT-actuated suspension-based dual-stage servo system. Position error signal (PES) for the servo system was obtained by measuring the slider displacement with an LDV and injecting a simulated track runout.


MEMS/NEMS ◽  
2007 ◽  
pp. 993-1022
Author(s):  
Roberto Oboe ◽  
Ernesto Lasalandra ◽  
Matthew T. White

Author(s):  
Eric M. Jayson ◽  
Frank E. Talke

Hard disk drives must be designed to withstand shock during operation. Large movements of the slider during shock impulse can cause reading and writing errors, track misregistration, or in extreme cases, damage to the magnetic material and loss of data. The design of the air bearing contour determines the steady state flying conditions of the slider as well as dynamic flying conditions, including shock response. In this paper a finite element model of the hard disk drive mechanical components was developed to determine the time dependent forces and moments applied to the slider during a shock event. The time dependent forces and moments are applied as external loads in a solution of the dynamic Reynolds equation to determine the slider response to a shock event. The genetic algorithm was then used to optimize the air bearing contour for optimum shock response while keeping the steady flying conditions constant. The results show substantial differences in the spacing modulation of the head/disk interface after a shock as a function of the design of the air bearing contour.


Author(s):  
Sung-Chang Lee ◽  
George W. Tyndall ◽  
Mike Suk

Flying clearance distribution with thermo-mechanical actuation is characterized. Especially, what factors contributing to variation of flying clearance are identified based on thermo-mechanical actuation profiles taken from burn-in process of hard disk drives and Gage R&R test of touch down repeatability. In addition, the effect of static temperature compensation scheme on flying clearance distribution is investigated and disadvantages of static adaptation to temperature change are identified. In order to avoid catastrophic early HDI failures due to poor static temperature compensation, we need to dynamically adjust flying clearance whenever environmental change is detected. Otherwise we need to utilize individual temperature sensitivity values of each flying head to adjust thermo-mechanical actuation amount accordingly with temperature change.


Author(s):  
Hequn Min ◽  
Xiaoyang Huang ◽  
Qide Zhang ◽  
Xin Xia

This paper presents an experimental study of digital narrowband active control on the flow-induced vibrations (FIV) on the head gimbals assembly (HGA) in a working hard disk drive (HDD). Firstly, the modal testing on the HDD was carried out, in which the disk modes were analyzed with a 1-D laser Doppler vibrometer (LDV) and the HGA vibration modes with a 3-D LDV. Secondly, a digital feedback control close-loop was implemented in experiments to suppress the FIV spectrum peaks on the HGA. In this close-loop, the HGA vibrations detected by the LDV were used as feedback error signals, then the signals was passed through a digital controller to generate feedback signals to drive a piezoelectric disk to actuate feedback acoustic pressure around the HGA. Active control experiments were conducted in narrow bands on five principal peaks in the HGA off-plate vibration spectrum, around 1256Hz, 1428Hz, 2141Hz, 2519Hz and 3469Hz, respectively. It is shown that distinct suppression of at least 10 dB can be achieved on all these HGA vibration peaks.


Author(s):  
Nopdanai Ajavakom ◽  
Pinporn Tanthanasirikul

One of the problems found in the 2.5-inch hard disk drives (HDD) in operation is its vibration. Aiming to find important information to help reduce the vibration transmitted to the outer shell of HDD, the parameters involving vibrational energy transmission among the main components of HDD are identified by the test-based Statistical Energy Analysis (SEA). First, the vibration tests of HDD in the idle mode are performed in order to identify the contribution of the main components; the platters and the top cover, to the overall vibration of HDD. Second, the SEA parameters including the dissipation loss factors of the components and coupling loss factors of the pairs of the components are then experimentally determined in order to calculate the vibration transmission power among the components.


Author(s):  
Zhimin He ◽  
Jianqiang Mou ◽  
Kheong Sann Chan ◽  
Suet Hoi Lam ◽  
Boon Long See ◽  
...  

One of the issues in VCM rotary actuation in hard disk drives (HDDs) is the excessive sensitivity of the system to the skew angle. The rotation of the VCM from the inner diameter (ID) to the outer diameter (OD) of the disk results in an angle of skew between the read/write head and the track. The difference in skew angle, between the ID to the OD can be as large as 25 to 30 degrees in conventional 3.5″ and 2.5″ HDDs. A large skew angle affects the slider’s flying performance and off-track capability, causing an increase in side reading and writing, and thus reduces the achievable recording density. Large skewed actuation also complicates the position error signal calibration process in the hard disk drive servo loop. This paper presents a 4 link mechanism which can be designed to achieve near zero skew actuation in hard disk drives. The profiles of the arm, suspension, and links can be designed and optimized such that the skew angle is close to zero while the VCM actuator rotates from the ID to the OD. Study shows that the 4-link mechanism does not degrade the resonance performance along the tracking direction compared to a conventional actuator.


Sign in / Sign up

Export Citation Format

Share Document