Modeling and Robust Discrete-Time Sliding Mode Control Design for a Fluid Power Electrohydraulic Actuator (EHA) System

Author(s):  
Yang Lin ◽  
Yang Shi ◽  
Richard Burton

This paper studies the design of a robust discrete-time sliding mode control (DT-SMC) for a high precision electro-hydraulic actuator (EHA) system with nonlinear actuator friction. Nonlinear friction in the hydraulic actuator can greatly influence the performance and accuracy of the hydraulic actuators; however, it is difficult to accurately model nonlinear friction characteristics. In this paper, it is proposed to characterize frictions as an uncertainty in the system matrices. Indeed, the effects of variations of the nonlinear friction coefficients are considered as norm bounded uncertainties that span a bounded region to cover a wide range of real actuator friction. For such a discrete-time dynamic model for the EHA system with system matrices uncertainties and a nonlinear term, a sufficient condition for the existence of stable sliding surfaces is proposed by using the linear matrix inequality (LMI) approach. Based on this existence condition, a discrete-time sliding mode controller is developed such that the reaching motion satisfies the discrete-time sliding mode reaching condition for uncertain systems. Simulation and comparison studies on the EHA system model illustrate the effectiveness of the proposed method. The study is simulation based only as it is important to establish the feasibility and stability of the controller before attempting to apply the controller to a physical system.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Maode Yan ◽  
Aryan Saadat Mehr ◽  
Yang Shi

This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC) design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs). Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.



2016 ◽  
Vol 829 ◽  
pp. 123-127
Author(s):  
Van Van Huynh ◽  
Thao Phuong Thi Nguyen

In this paper, a new sliding mode control law is developed for a class of mismatched uncertain systems with more general exogenous disturbances. First, we derive a new existence condition of linear sliding surface in terms of strict linear matrix inequalities such that the reduce-order sliding mode dynamics is is asymptotically stable. Second, we propose an adaptive sliding mode control law such that the system states reach the sliding surface in finite time and stay on its thereafter. Final, a numerical example is used to demonstrate the efficacy of the proposed method.



2017 ◽  
Vol 11 (9) ◽  
pp. 1333-1340 ◽  
Author(s):  
Hua Zhou ◽  
Liming Lao ◽  
Yinglong Chen ◽  
Huayong Yang


2014 ◽  
Vol 39 (9) ◽  
pp. 1552-1557 ◽  
Author(s):  
Xi LIU ◽  
Xiu-Xia SUN ◽  
Wen-Han DONG ◽  
Peng-Song YANG


2020 ◽  
Vol 14 (16) ◽  
pp. 2413-2418
Author(s):  
Haifeng Ma ◽  
Yangmin Li ◽  
Zhenhua Xiong


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3011
Author(s):  
Paweł Latosiński ◽  
Andrzej Bartoszewicz

Sliding mode control strategies are well known for ensuring robustness of the system with respect to disturbance and model uncertainties. For continuous-time plants, they achieve this property by confining the system state to a particular hyperplane in the state space. Contrary to this, discrete-time sliding mode control (DSMC) strategies only drive the system representative point to a certain vicinity of that hyperplane. In established literature on DSMC, the width of this vicinity has always been strictly greater than zero in the presence of uncertainties. Thus, ideal sliding motion was considered impossible for discrete-time systems. In this paper, a new approach to DSMC design is presented with the aim of driving the system representative point exactly onto the sliding hyperplane even in the presence of uncertainties. As a result, the quasi-sliding mode band width is effectively reduced to zero and ideal discrete-time sliding motion is ensured. This is achieved with the proper selection of the sliding hyperplane, using the unique properties of relative degree two sliding variables. It is further demonstrated that, even in cases where selection of a relative degree two sliding variable is impossible, one can use the proposed technique to significantly reduce the quasi-sliding mode band width.



Sign in / Sign up

Export Citation Format

Share Document