Optimal Performance of Cylinder-by-Cylinder and Fuel Bank Controllers for a CIDI Engine

Author(s):  
Ming Fang ◽  
Shawn Midlam-Mohler ◽  
Rajaram Maringanti ◽  
Fabio Chiara ◽  
Marcello Canova

At present, Diesel engine combustion in most production engines is controlled via open-loop control. Increasing pressure from tightening emissions standards and on-board diagnosis requirements has made closed-loop combustion a possibility for production engines in the near future. For new combustion concepts, such as Homogeneous Charge Compression Ignition and other low NOx regimes, the need for closed-loop combustion control is very strong. In this work, the applicability of closed-loop combustion control for controlling the variability between cylinders in conventional Diesel combustion is explored through the use of a high-fidelity engine model. The problem is formulated such that the optimal performance of two different closed-loop control concepts can be evaluated through optimization rather than via control design. It is found that, for the types of disturbances occurring in a non-faulty engine, that control of individual cylinders leads to small performance gains compared to fuel bank control.

Author(s):  
Roberto Strada ◽  
Alberto Oldani

Electro-hydraulic elevators are widely used systems, especially in low level buildings, due to their very good ratio between power generation and dynamic response. Generally, the goal of an elevator system is just to reach the floor with a precision enough to be comfortable for the passengers, without the need to follow a specific law of motion; hence an open-loop control system could be enough. Otherwise such a kind of solution reduces the number of components, bringing down the costs of production. On the other hand a complete knowledge of the mechanical system’s behaviour is required. In this work we deal with the analysis of the behaviour of a commercial hydraulic elevator driven by an open loop control that monitors the downstream pressure of the proportional valve supplying the cylinder. At the end of the paper, a closed loop solution based on the pressure measurement and on the motion time is proposed.


Author(s):  
Christopher Pelzmann ◽  
Laxman Saggere

This paper presents a novel approach to manipulation and assembly of micro-scale objects using a chip-scale multi-fingered micromanipulator, in which multiple, independently controlled compliant fingers coordinate with each other to grasp and manipulate multiple objects simultaneously on-chip. The structural and functional advantages of this multi-fingered micromanipulator in achieving high dexterity in a compact form as compared to other state-of-the-art manipulation tools are discussed. A formulation of the kinematics of the manipulator’s compliant fingers along with two different control strategies including an operator-driven closed-loop control and a semi-autonomous open-loop control for coordinated manipulation and on-chip assembly of micro-scale objects are introduced. Finally, the details of implementation of both control strategies and successful experimental demonstration of manipulations and assembly of two interlocking micro-scale parts with sub-micron mating clearance using the multifingered manipulator are presented.


2019 ◽  
Vol 34 ◽  
Author(s):  
Meng-Cheng Lau ◽  
John Anderson ◽  
Jacky Baltes

Abstract This paper presents our sketch drawing artist humanoid robot research. One of the limitations of the existing artist humanoid robot is the lack of feedback on the error that occurs during the drawing process. The contribution of this research is the development of a humanoid robot artist with drawing error correction capability. Based on our previous work with open-loop control pen-and-ink humanoid robot artist, we have implemented a closed-loop visual servoing approach to address this problem. Our experimental results show that this approach is sufficient to correct drawing errors that occur due to mechanical limitation of a robot.


2009 ◽  
Vol 3 (5) ◽  
pp. 1031-1038 ◽  
Author(s):  
William L. Clarke ◽  
Stacey Anderson ◽  
Marc Breton ◽  
Stephen Patek ◽  
Laurissa Kashmer ◽  
...  

Background: Recent progress in the development of clinically accurate continuous glucose monitors (CGMs), automated continuous insulin infusion pumps, and control algorithms for calculating insulin doses from CGM data have enabled the development of prototypes of subcutaneous closed-loop systems for controlling blood glucose (BG) levels in type 1 diabetes. The use of a new personalized model predictive control (MPC) algorithm to determine insulin doses to achieve and maintain BG levels between 70 and 140 mg/dl overnight and to control postprandial BG levels is presented. Methods: Eight adults with type 1 diabetes were studied twice, once using their personal open-loop systems to control BG overnight and for 4 h following a standardized meal and once using a closed-loop system that utilizes the MPC algorithm to control BG overnight and for 4 h following a standardized meal. Average BG levels, percentage of time within BG target of 70–140 mg/dl, number of hypoglycemia episodes, and postprandial BG excursions during both study periods were compared. Results: With closed-loop control, once BG levels achieved the target range (70–140 mg/dl), they remained within that range throughout the night in seven of the eight subjects. One subject developed a BG level of 65 mg/dl, which was signaled by the CGM trend analysis, and the MPC algorithm directed the discontinuance of the insulin infusion. The number of overnight hypoglycemic events was significantly reduced ( p = .011) with closed-loop control. Postprandial BG excursions were similar during closed-loop and open-loop control Conclusion: Model predictive closed-loop control of BG levels can be achieved overnight and following a standardized breakfast meal. This “artificial pancreas” controls BG levels as effectively as patient-directed open-loop control following a morning meal but is significantly superior to open-loop control in preventing overnight hypoglycemia.


2010 ◽  
Vol 283 (10) ◽  
pp. 2017-2019 ◽  
Author(s):  
Quanquan Mu ◽  
Zhaoliang Cao ◽  
Zenghui Peng ◽  
Yonggang Liu ◽  
Lifa Hu ◽  
...  

1999 ◽  
Vol 354 (1385) ◽  
pp. 841-847 ◽  
Author(s):  
Johan L. Leeuwen

This paper introduces some basic concepts of the interdisciplinary field of neuromuscular control, without the intention to be complete. The complexity and multifaceted nature of neuromuscular control systems is briefly addressed. Principles of stability and planning of motion trajectories are discussed. Closed–loop and open–loop control are considered, together with the inherent stability properties of muscles and the geometrical design of animal bodies. Various modelling approaches such as inverse and forward dynamics are outlined, as used by several authors in the Philosophical Transactions of the Royal Society of London, series B, May 1999 issue. An introductory overview is presented of the other contributions in that issue.


Author(s):  
P G Hodgson ◽  
J K Raine

Part 1 of this paper presented a theoretical model for the torque absorption and energy dissipation processes in a variable fill Froude-type hydraulic dynamometer. Effects of working compartment geometry changes on steady state running full torque absorption performance were also shown. Part 2 presents both steady state and dynamic computer simulations of an engine-dynamometer system under open-loop control. Comparisons between model simulations and test bed data show that the dynamic model reproduces both the negative torque-speed dynamometer characteristics and other transient phenomena that occur under real open-loop partial fill conditions. Requirements of control systems to modify this behaviour and ensure stable set point holding are introduced. Part 3 of the paper will deal with the simulation of the engine-dynamometer system under closed-loop control.


Sign in / Sign up

Export Citation Format

Share Document