A Physically-Based, Control-Oriented Diesel Particulate Filter (DPF) Model for the Applications of NO/NO2 Ratio Estimation Using a NOx Sensor

Author(s):  
Ming-Feng Hsieh ◽  
Junmin Wang

This paper presents a physically-based, control-oriented Diesel particulate filter (DPF) model for the purposes of NO and NO2 concentration estimations in Diesel engine aftertreatment systems. The presence of NO2 in exhaust gas plays an important role in selective catalytic reduction (SCR) NOx reduction efficiency. However, current NOx cannot differentiate NO and NO2 from the total NOx concentration. A model which can be used to estimate NO and NO2concentrations in exhaust gas flowing into the SCR catalyst is thus necessary. Current aftertreatment systems for light-, medium-, and heavy-duty Diesel engines generally include Diesel oxidation catalyst (DOC), DPF, and SCR. The DPF related NO/NO2 dynamics was investigated in this study, and a control-oriented model was developed and validated with experimental data.

Author(s):  
Ming-Feng Hsieh ◽  
Junmin Wang

This paper presents an experimentally validated control-oriented model and an observer for diesel oxidation catalyst (DOC)-diesel particulate filter (DPF) system in the context of exhaust gas NO and NO2 concentration estimations. NO and NO2 have different reaction characteristics within DPF and selective catalytic reduction (SCR) systems, two most promising diesel engine aftertreatment systems. Although the majority of diesel engine-out NOx emissions is NO, the commonly used DOC located upstream of a DPF and a SCR can convert a considerable amount of NO to NO2. Knowledge of the NO/NO2 ratio in exhaust gas is thus meaningful for the control and diagnosis of DPF and SCR systems. Existing onboard NOx sensors cannot differentiate NO and NO2, and such a sensory deficiency makes separate considerations of NO and NO2 in SCR control design challenging. To tackle this problem, a control-oriented dynamic model, which can capture the main NO and NO2 dynamics from engine-out, through DOC, and to DPF, was developed. Due to the computational limitation concerns, DOC and DPF are assumed to be standard continuously stirred tank reactors in order to obtain a 0D ordinary differential equation model. Based on the model, an observer, with the measurement from a commercially available NOx sensor, was designed to estimate the NO and NO2 concentrations in the exhaust gas along the aftertreatment systems. The stability of the observer was shown through a Lyapunov analysis assisted by insight into the system characteristics. The control-oriented model and the observer were validated with engine experimental data and the measured NO/NO2 concentrations by a Horiba gas analyzer. Experimental results show that the model can accurately predict the main engine-out/DOC/DPF NO/NO2 dynamics very well in semisteady-state tests. For the proposed observer, the predictions converge to the model values and estimate the NO and NO2 concentrations in the aftertreatment system well.


Author(s):  
Ming-Feng Hsieh ◽  
Junmin Wang

NO and NO2 are generally considered together as NOx in engine emissions. Since NO2/NOx ratio is small in diesel engine exhaust gas, very often, existence of NO2 is ignored in studies/applications. However, current diesel aftertreatment systems generally include diesel oxidation catalysts (DOCs) at upstream of other catalysts such as diesel particulate filter (DPF) and selective catalytic reduction (SCR). DOC can significantly increase the NO2 fraction in the exhaust NOx. Because NO2 and NO have completely different reaction characters within catalysts, e.g. NO2 can assist DPF regeneration while NO cannot, and SCR De-NOx rate can be increased with higher NO2/NOx ratio (no more than 0.5), considerations of NO2 in aftertreatment systems are becoming necessary. Nevertheless, current onboard NOx sensors cannot differentiate NO and NO2 from NOx. This induces an interest in the method of estimating the concentrations of NO and NO2 in the exhaust gas by available measurements. In this paper, a physically-based, DOC control-oriented model which considers the NO and NO2 related dynamics and an engine exhaust NO/NO2 prediction method were proposed for the purposes of NO/NO2 ratio estimation in diesel engine aftertreatment systems, and the developed model was validated with experimental data.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
Thaddeus A. Swor ◽  
James J. Schauer‡

Two methods, diesel particulate filter (DPF) and selective catalytic reduction (SCR) systems, for controlling diesel emissions have become widely used, either independently or together, for meeting increasingly stringent emissions regulations world-wide. Each of these systems is designed for the reduction of primary pollutant emissions including particulate matter (PM) for the DPF and nitrogen oxides (NOx) for the SCR. However, there have been growing concerns regarding the secondary reactions that these aftertreatment systems may promote involving unregulated species emissions. This study was performed to gain an understanding of the effects that these aftertreatment systems may have on the emission levels of a wide spectrum of chemical species found in diesel engine exhaust. Samples were extracted using a source dilution sampling system designed to collect exhaust samples representative of real-world emissions. Testing was conducted on a heavy-duty diesel engine with no aftertreatment devices to establish a baseline measurement and also on the same engine equipped first with a DPF system and then a SCR system. Each of the samples was analyzed for a wide variety of chemical species, including elemental and organic carbon, metals, ions, n-alkanes, aldehydes, and polycyclic aromatic hydrocarbons, in addition to the primary pollutants, due to the potential risks they pose to the environment and public health. The results show that the DPF and SCR systems were capable of substantially reducing PM and NOx emissions, respectively. Further, each of the systems significantly reduced the emission levels of the unregulated chemical species, while the notable formation of new chemical species was not observed. It is expected that a combination of the two systems in some future engine applications would reduce both primary and secondary emissions significantly.


Fuel ◽  
2017 ◽  
Vol 198 ◽  
pp. 58-67 ◽  
Author(s):  
Federico Millo ◽  
Mahsa Rafigh ◽  
Maurizio Andreata ◽  
Theodoros Vlachos ◽  
Pranav Arya ◽  
...  

Author(s):  
Pingen Chen ◽  
Junmin Wang

This paper presents a control-oriented model describing the dynamics of oxygen concentration through a Diesel engine aftertreatment system that includes a Diesel oxidation catalyst (DOC) and a Diesel particulate filter (DPF). Exhaust gas oxygen concentration is important for catalysts such as NOx conversion efficiencies of selective catalytic reduction (SCR) systems and lean NOx traps (LNT). In the presence of low-pressure loop exhaust gas recirculation (EGR), the exhaust gas oxygen concentration after-DPF also influences combustion. Due to the chemical reactions occurring inside DOC and DPF, the exhaust gas oxygen concentration considerably varies through the aftertreatment systems. Directly measuring the exhaust gas oxygen concentrations at different locations through the exhaust gas aftertreatment system is costly and unreliable. A dynamic model is thus needed in order to design model-based observers to estimate the exhaust gas oxygen concentrations at various locations. The oxygen-related reactions within a DOC and a DPF are investigated in this study. A lumped-parameter, control-oriented DOC-DPF oxygen concentration dynamic model was developed by a multi-objective optimization method and validated with experimental data obtained on a medium-duty Diesel engine equipped with full aftertreatment systems. Experimental results show that the model can well capture the oxygen dynamics across the Diesel engine aftertreatment systems.


2020 ◽  
Author(s):  
Ελένη Παπαϊωάννου

Ιδιαίτερη ανησυχία παρατηρείται κατά την τελευταία δεκαετία στην επιστημονική κοινότητα, σχετικά με τις δυσμενείς επιπτώσεις στην υγεία - κυρίως στο αναπνευστικό σύστημα- και στο περιβάλλον, των αερολυμάτων αποτελούμενων από νανοσωματίδια που προέρχονται είτε από διεργασίες καύσης (κυρίως ρύπανση από οχήματα) είτε παράγονται μέσω σύνθεσης για προϊόντα νανοτεχνολογίας. Η διατριβή επικεντρώνεται κυρίως στην έρευνα αερολυμάτων νανοσωμαιδίων που παράγονται από διεργασίες καύσης, χωρίς να παραλείψει να ενσωματώσει τη μελέτη συνθετικών νανοσωματιδίων που σχετίζονται με τις τεχνολογίες ελέγχου εκπομπών κινητήρων καύσης. Τα φυσικοχημικά χαρακτηριστικά/ιδιότητες των αερολυμάτων νανοσωματιδίων (αριθμός σωματιδίων και μέγεθος, κατανομή μεγέθους, χημική σύσταση και ειδική επιφάνεια) αναλύθηκαν και μετρήθηκαν με σκοπό την κατανόηση και αξιολόγηση της συσχέτισης τους με πιθανή τοξικότητα των σωματιδίων. Οι κύριες τεχνικές χαρακτηρισμού παρουσιάζονται μαζί με ορισμένες καινοτόμες τεχνολογίες που έχουν αναπτυχθεί με βάση τη θεωρία του φωτοιονισμού και εφαρμόζονται για την ανίχνευση ή/και ταξινόμηση των σωματιδίων που παράγονται από την καύση σε κινητήρες οχημάτων (σωματίδια αιθάλης) αλλά και συμπυκνωμάτων προερχόμενων από πυρήνωση/συμπύκνωση συστατικών των καυσαερίων (πολυαρωματικοί υδρογονάνθρακες, PAH) που έχουν προσροφηθεί στην επιφάνειά των σωματιδίων. Για την αξιολόγηση της επίδρασης της κατανομής μεγέθους σωματιδίων στην υγεία αναπτύχθηκε και αξιολογήθηκε πρωτότυπος δειγματολήπτης επιλεκτικού διαχωρισμού μεγέθους σωματιδίων, (Selective Particle Size, SPS sampler), ικανός να παρέχει συνεχή ροή νανοσωματιδίων συγκεκριμένων περιοχών μεγέθους. Ο σχεδιασμός του SPS βασίζεται και συνδυάζει τις αρχές των φαινομένων μεταφοράς αερολύματος και των τεχνολογιών διαχωρισμού. Σωματίδια μικρότερα από ένα δεδομένο μέγεθος απομακρύνονται από την εξάτμιση λόγω της διάχυσης Brown, ενώ η αφαίρεση σωματιδίων πάνω από ένα δεδομένο μέγεθος επιτυγχάνεται με το μηχανισμό της αδρανειακής μεταφοράς/πρόσκρουσης. Εφαρμόζοντας το δείγματολήπτη SPS στα καυσαέρια από κινητήρες οχημάτων, αποδεικνύεται ότι είναι δυνατόν να ληφθούν δύο ρεύματα αερολύματος με ευρέως διαχωρισμένες κατανομές μεγέθους σωματιδίων (νανομετρικών διαστάσεων), κατάλληλες για μελέτες βιολογικής έκθεσης. Προκειμένου να μελετηθούν οι διάφορες παράμετροι που επηρεάζουν την υγεία του ανθρώπου και σχετίζονται με τα αερολύματα νανοσωματιδίων, υπάρχει απαίτηση για την εύρεση μεθόδων/εργαλείων για οργανοτυπική έκθεση και ομοιόμορφη έκθεση κυττάρων σε νανοσωματίδια. Οργανοτυπική έκθεση σημαίνει ότι τα νανοσωματίδια πρέπει να έρθουν σε επαφή με το βιολογικό δείγμα με όσο πιο παρόμοιο τρόπο γίνεται με αυτόν της πραγματικής έκθεσης κατά την εισπνοή, ενώ το βιολογικό δείγμα πρέπει να διατηρείται σε αντίστοιχες οργανοτυπικές συνθήκες (θερμοκρασία, υγρασία, κλπ). Για το σκοπό αυτό, στην παρούσα διατριβή, σχεδιάστηκαν, κατασκευάστηκαν και αξιολογήθηκαν καινοτόμοι θάλαμοι ομοιόμορφης και οργανοτυπικής in vitro έκθεσης πολλαπλών βιολογικών δειγμάτων (Multiculture Exposure Chamber, MEC), όπου οι καλλιέργειες γίνονται στη διεπιφάνεια υγρού/αερίου σε ειδικά ενθέματα (inserts) που τοποθετούνται στις θέσεις των φρεατίων (wells) των πιάτων καλλιεργειών. Η πρώτη γενιά του θαλάμου έκθεσης περιλάμβανε 4 πιάτα καλλιεργειών με 6 διαθέσιμα φρεάτια για κυτταρικές καλλιέργειες (σύνολο 24 θέσεις καλλιεργειών), ενώ η δεύτερη γενιά του θαλάμου MEC ΙΙ αύξησε τον αριθμό των καλλιεργειών σε 36. Η αξιολόγησή της ομοιόμορφης εναπόθεσης των νανοσωματιδίων στις κυτταρικές καλλιέργειες πραγματοποιήθηκε με δύο τύπους νανοσωματιδίων (σωματίδια αιθάλης κινητήρα ντίζελ, και συνθετικά νανοσωματίδια που ενσωματώνονται σε τεχνολογίες ελέγχου απαερίων εξάτμισης κινητήρα) και με όργανα μέτρησης των χαρακτηριστικών των νανοσωματιδίων. Επίσης, η ομοιόμορφη και ελεγχόμενη δοσιμετρία των νανοσωματιδίων, στα οποία εκτίθενται οι κυτταρικές καλλιέργειες, αξιολογήθηκε με βάση μετρήσεις της απόδοσης συλλογής νανοσωματιδίων και μικροσκοπία ηλεκτρονικής διέλευσης (TEM). Επιπλέον, εξετάστηκε η πιθανότητα παραγωγής δραστικών μορφών οξυγόνου (Reactive Oxygen Species, ROS) (π.χ. παραγωγή ελεύθερων ριζών και υπεροξειδίων) με αποτέλεσμα την παραγωγή οξειδωτικού στρες στα κύτταρα, που μπορεί να προκαλέσει εκτεταμένη κυτταρική βλάβη ή βλάβη στο DNA. Επιπλέον, μετρήθηκε η παραγωγή ROS/οξειδωτικού στρες σε κύτταρα από σωματίδια CeO2 με σκοπό τη συσχέτιση του μεγέθους και των δομικών χαρακτηριστικών τους (κρυσταλλικό μέγεθος, ειδική επιφάνεια και πορώδες) με την ικανότητα οξειδώσεως αιθάλης και τη δημιουργία ROS/οξειδωτικού στρες στα κύτταρα. Ο έλεγχος και η αξιολόγηση και των δύο θαλάμων έκθεσης πραγματοποιήθηκε εκθέτοντας διαφορετικές κυτταρικές καλλιέργειες είτε σε αερόλυμα καυσαερίων κινητήρα οχημάτων είτε σε νανοσωματίδια οξειδίου του Δημητρίου (CeO2). Πραγματοποιήθηκαν εκθέσεις κυψελιδικών επιθηλιακών κυττάρων και κυττάρων αίματος σε απαέρια εξάτμισης κινητήρα Diesel για να προσδιοριστεί εάν οι τεχνολογίες ελέγχου εκπομπών Diesel (είτε συστήματος οξειδωτικού μετατροπέα, Diesel Oxidation Catalyst (DOC) σε σειρά με φίλτρο αιθάλης, Diesel Particulate Filter (DPF), είτε με τον εμπλουτισμό του καυσίμου ντίζελ με πρόσθετο καυσίμου CeO2) επηρεάζουν τις ανοσορρυθμιστικές αντιδράσεις των κυττάρων. Τέλος, προκειμένου να αξιολογηθεί η επίδραση της κατανομής μεγέθους σωματιδίων καυσαερίων σε βιολογικές αποκρίσεις (δραστηριότητα υποκινητή της κυτοκίνης, έκκριση κυτοκίνης και βιωσιμότητα κυττάρων), οργανώθηκαν πειράματα με τη λειτουργία του συστήματος SPS -MEC.Συμπερασματικά, το σύστημα δειγματοληψίας που αναπτύχθηκε παρουσιάζει σταθερό λόγο αραίωσης, ικανότητα απομάκρυνσης πτητικών ενώσεων > 99% και χαρακτηρίζεται από ελάχιστες απώλειες σωματιδίων (η διείσδυση στερεών σωματιδίων έως 10 nm είναι υψηλότερη από 80%) ακόμη και στα μικρότερα μεγέθη σωματιδίων. Οι μετρήσεις της ικανότητας φόρτισης σωματιδίων με την εφαρμογή του φωτοηλεκτρικού φορτιστή (UV-PEC) με βάση το όριο φωτονιονισμού (μήκος κύματος φωτός UV) μπορεί να χρησιμοποιηθεί για τη διάκριση του χημικού αποτυπώματος πολυαρωματικών υδρογονανθράκων στα σωματίδια των καυσαερίων. Ο συνδυασμός SPS -MEC αποτελεί καινοτόμο σύστημα για την σταθερή και γρήγορη αξιολόγηση επιλεγμένων μεγεθών ροής νανοσωματιδίων που εκτίθενται σε in vitro καλλιέργειες κυττάρων. Αποδεικνύεται ότι τα μικρότερα σωματίδια με μέση διάμετρο μεγέθους τα 54 nm παρουσιάζουν αυξημένη παραγωγή κυτοκινών, σε σχέση με κατανομές μεγαλύτερου μεγέθους σωματιδίων. Τέλος τα πρόσθετα καυσίμου -ακόμη και σε μικρές συγκεντρώσεις στο καύσιμο diesel- εμφανίζονται να έχουν επίδραση στην υγεία του ανθρώπου καθώς αυξάνουν την παραγωγή ενώσεων ROS.


Sign in / Sign up

Export Citation Format

Share Document