Active Compressor Surge Control Using Piston Actuation
A novel approach to active surge control in compressors using piston actuation is presented. Two control laws are compared in order to evaluate the feasibility of implementing the concept. The first control law is a nonlinear feedback control derived by using backstepping and the second one is a linear feedback control derived by analyzing the eigenvalues of the linearized system around the operating point. The nonlinear feedback control law makes the closed loop system globally asymptotically stable (GAS) and uses full states feedback. The linear feedback control is only using feedback from plenum pressure and piston velocity and the removal of the mass flow feedback is advantageous for implementation. The closed loop system with the linear feedback control is locally asymptotically stable around the operating point. Simulations show that both controllers are capable of stabilizing surge.