Modeling and Control of a Thermoelastic Beam

Author(s):  
Ilhan Tuzcu ◽  
Javier Gonzalez-Rocha

The objective of this paper is to model a thermoelastic beam and use thermoelectric heat actuators dispersed over the beam to control not only its vibration, but also its temperature. The model is represented by two coupled partial differential equations governing the elastic bending displacement and temperature variation over the length of the beam. The partial differential equations are replaced by a set of ordinary differential equations through discretization. The first-order ordinary differential equations are cast in the compact state-space form to be used in the thermoelastic analysis and control. The Linear Quadratic Gaussian (LQG) is used for control design. An numerical application to a uniform cantilever beam demonstrates the coupling between the temperature and the elastic displacement and feasibility of using thermoelectric actuators in controlling the vibration and temperature simultaneously.

2016 ◽  
Vol 23 (20) ◽  
pp. 3309-3326 ◽  
Author(s):  
Ilhan Tuzcu ◽  
Joshua K Moua ◽  
Joe G Olivares

This paper explores the idea of using heat as an actuator to simultaneously control vibration and temperature of a thermoelastic beam. We first model the beam as a slender, uniform cantilever beam of rectangular cross-section subject to heat through heat patches on the lower and upper surfaces at some discrete spanwise locations. The governing equations of the model are two coupled partial differential equations: one governing the elastic bending displacement and one governing the two-dimensional heat conduction of the beam. Through a discretization, the partial differential equations are replaced by a set of ordinary differential equations in a compact state-space form. We show that the coupling is actually between elastic displacement and those components of temperature contributing to the thickness-wise gradient at the midplane. The linear quadratic regulator in conjunction with the Kalman–Bucy filter is used for the control design to simultaneously damp out the displacement and the gradient. In a numerical example, we show the presence of thermoelastic damping due to the coupling. We also show that the displacement and gradient can simultaneously be controlled by using displacement measurements only, and that for less control effort it is also necessary to include some temperature measurements in the feedback.


Author(s):  
Yuhong Zhang ◽  
Sunil K. Agrawal ◽  
Peter Hagedorn

A systematic procedure for deriving the system model of a cable transporter system with arbitrarily time-varying lengths is presented. Two different approaches are used to develop the model, namely, Newton’s Law and Hamilton’s Principle. The derived governing equations are nonlinear partial differential equations. The same results are obtained using the two methods. The Rayleigh-Ritz method is used to obtain an approximate numerical solution of the governing equations by transforming the infinite order partial differential equations into a finite order discretized system. A Lyapunov controller which can both dissipate the vibratory energy and assure the attainment of the desired goal is derived. The validity of the proposed controller is verified by numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Yang Zhang ◽  
Edwin K. P. Chong ◽  
Jan Hannig ◽  
Donald Estep

We introduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed byN, the number of nodes in the network. AsNgoes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.


Author(s):  
Jean Chamberlain Chedjou ◽  
Kyandoghere Kyamakya

This paper develops and validates through a series of presentable examples, a comprehensive high-precision, and ultrafast computing concept for solving nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN). The core of this concept is a straightforward scheme that we call "nonlinear adaptive optimization (NAOP),” which is used for a precise template calculation for solving nonlinear ODEs and PDEs through CNN processors. One of the key contributions of this work is to demonstrate the possibility of transforming different types of nonlinearities displayed by various classical and well-known nonlinear equations (e.g., van der Pol-, Rayleigh-, Duffing-, Rössler-, Lorenz-, and Jerk-equations, just to name a few) unto first-order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN templates. Furthermore, in the case of PDE solving, the same concept also allows a mapping unto first-order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDE in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultrafast solver of nonlinear ODEs and/or PDEs. This clearly enables a CNN-based, real-time, ultraprecise, and low-cost computational engineering. As proof of concept, two examples of well-known ODEs are considered namely a second-order linear ODE and a second order nonlinear ODE of the van der Pol type. For each of these ODEs, the corresponding precise CNN templates are derived and are used to deduce the expected solutions. An implementation of the concept developed is possible even on embedded digital platforms (e.g., field programmable gate array (FPGA), digital signal processor (DSP), graphics processing unit (GPU), etc.). This opens a broad range of applications. Ongoing works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting ODEs and PDEs equation models such as Lorenz-, Rössler-, Navier Stokes-, Schrödinger-, Maxwell-, etc.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


2013 ◽  
Vol 5 (2) ◽  
pp. 212-221
Author(s):  
Houguo Li ◽  
Kefu Huang

AbstractInvariant solutions of two-dimensional elastodynamics in linear homogeneous isotropic materials are considered via the group theoretical method. The second order partial differential equations of elastodynamics are reduced to ordinary differential equations under the infinitesimal operators. Three invariant solutions are constructed. Their graphical figures are presented and physical meanings are elucidated in some cases.


Sign in / Sign up

Export Citation Format

Share Document