Electrospinning Nanofibers: Measurements, Dynamics, and Control Strategy Development

Author(s):  
Yunshen Cai ◽  
Michael Gevelber

Electrospinning produces submicron fibers for a variety of applications using a wide range of polymers. Achieving the desired fiber diameter, maximizing productivity, and minimizing variation are important production objectives. This paper addresses several important areas needed to develop a general electrospinning control approach including: developing a correlation between measurements, process conditions, and the resulting fiber diameter, developing a method to determine an operating regime that meets manufacturing objectives, and identifying process dynamics for controller design.

Author(s):  
Xuri Yan ◽  
Michael Gevelber

In many emerging, high value electrospinning applications, the diameter distribution of electrospun fibers has important implications for the product’s performance and process reproducibility. However, the current state-of-the-art electrospinning process results in diameter distribution variations, both during a run and run-to-run. To address these problems, a vision-based, open loop system has been developed to better understand the process dynamics. The effects of process parameters on fiber diameter distributions are investigated, process dynamics are identified, and the relation between measurable variables and the resulting fiber diameter distribution is analyzed.


Author(s):  
W K Chung ◽  
H S Cho

Non-linear characteristics and uncertainty in manipulator dynamics caused by payload effects are major hurdles in controller design. To overcome such hurdles the authors have introduced an automatic balancing concept which has been proved to reduce the non-linear complexity in manipulator dynamics as well as to remove gravity loading. This paper examines the characteristic features of balanced manipulator dynamics in more detail and presents an efficient control algorithm suitable for the dynamics. Since the dynamics of a balanced manipulator are characterized by partially configuration-independent inertial properties, the present algorithm adopts two different control concepts ‘the computed torque control’ for the joint having coupled, configuration-dependent inertia and ‘an optimal constant feedback control’ for the joints having configuration-independent inertia. To evaluate the proposed control algorithm, simulation studies were made over a wide range of manipulator speeds and payloads. Based upon the simulation results, the efficiency of the controller is discussed in detail.


1991 ◽  
Vol 30 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Rajinder Pal ◽  
Jacob Masliyah

2020 ◽  
Vol 135 ◽  
pp. 106736 ◽  
Author(s):  
Junho Park ◽  
R. Abraham Martin ◽  
Jeffrey D. Kelly ◽  
John D. Hedengren

2004 ◽  
Vol 37 (9) ◽  
pp. 467-474
Author(s):  
Robert S. Parker ◽  
Francis J. Doyle ◽  
Michael A. Henson

Author(s):  
So-Ryeok Oh ◽  
Ji-Chul Ryu ◽  
Sunil K. Agrawal

This paper presents a study of the dynamics and control of a helicopter carrying a payload through a cable-suspended robot. The helicopter can perform gross motion, while the cable suspended robot underneath the helicopter can modulate a platform in position and orientation. Due to the under-actuated nature of the helicopter, the operation of this dual system consisting of the helicopter and the cable robot is challenging. We propose here a two time scale control method, which makes it possible to control the helicopter and the cable robot independently. In addition, this method provides an effective estimation on the bound of the motion of the helicopter. Therefore, even in the case where the helicopter motion is unknown, the cable robot can be stabilized by implementing a robust controller. Simulation results of the dual system show that the proposed control approach is effective for such a helicopter-robot system.


Sign in / Sign up

Export Citation Format

Share Document