Control Design for a Hand Tremor Suppression Pen

Author(s):  
Che Ou ◽  
Andrew Gouldstone ◽  
Beverly Kris Jaeger ◽  
Rifat Sipahi

Active feedback control is utilized in this study in order to regulate pen-tip deviations in a novel pen design with the aim to minimize the effects of hand tremors on handwriting. The pen comprises a pendulum-like pen-rod that swings inside a tubular shaped pen casing, and between the pen and the casing, certain compliance and active actuation is considered. Since by the nature of the system dynamics, arbitrary pole placement is not possible in the design of the controller, a nonlinear optimization scheme is constructed to design the controller gains. With these gains, pen-tip deviations are minimized (≈ −47 dB) when the pen casing is subjected tremor-induced cyclic disturbances, and pen-tip response against impulsive perturbations is satisfactorily improved (settling time ≈ 1 sec) while keeping the controller effort around 2 N. Simulation studies are presented comparing the efficacy of the proposed controller with respect to a passively controlled pen, along with trade-offs within the design parameter space.

Author(s):  
H. Porumamilla ◽  
A. G. Kelkar

This paper presents robust controller design for an active automobile suspension system using an interative LQG design technique. The main objective is to design an active feedback control for an automobile suspension system to ensure the ride comfort for passengers in the presence of unknown road disturbances. The control system designed is shown to be robust to uncertainties and parametric variations. The resulting interative LQG-based control design is shown to achieve a significant improvement in the performance, while maintaining a desired level of closed-loop stability that is robust to plant uncertainties and parametric variations. The controller design is also compared to some other active suspension designs published in the literature.


Author(s):  
Ahmed Khalil ◽  
Nicolas Fezans

AbstractGust load alleviation functions are mainly designed for two objectives: first, alleviating the structural loads resulting from turbulence or gust encounter, and hence reducing the structural fatigue and/or weight; and second, enhancing the ride qualities, and hence the passengers’ comfort. Whilst load alleviation functions can improve both aspects, the designer will still need to make design trade-offs between these two objectives and also between various types and locations of the structural loads. The possible emergence of affordable and reliable remote wind sensor techniques (e.g., Doppler LIDAR) in the future leads to considering new types of load alleviation functions as these sensors would permit anticipating the near future gusts and other types of turbulence. In this paper, we propose a preview control design methodology for the design of a load alleviation function with such anticipation capabilities, based on recent advancements on discrete-time reduced-order multi-channel $$H_\infty $$ H ∞ techniques. The methodology is illustrated on the DLR Discus-2c flexible sailplane model.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2205
Author(s):  
Muhammad Usama ◽  
Jaehong Kim

This paper presents a nonlinear cascaded control design that has been developed to (1) improve the self-sensing speed control performance of an interior permanent magnet synchronous motor (IPMSM) drive by reducing its speed and torque ripples and its phase current harmonic distortion and (2) attain the maximum torque while utilizing the minimum drive current. The nonlinear cascaded control system consists of two nonlinear controls for the speed and current control loop. A fuzzy logic controller (FLC) is employed for the outer speed control loop to regulate the rotor shaft speed. Model predictive current control (MPCC) is utilized for the inner current control loop to regulate the drive phase currents. The nonlinear equation for the dq reference current is derived to implement the maximum torque per armature (MTPA) control to achieve the maximum torque while using the minimum current values. The model reference adaptive system (MRAS) was employed for the speed self-sensing mechanism. The self-sensing speed control performance of the IPMSM motor drive was compared with that of the traditional cascaded control schemes. The stability of the sensorless mechanism was studied using the pole placement method. The proposed nonlinear cascaded control was verified based on the simulation results. The robustness of the control design was ensured under various loads and in a wide speed range. The dynamic performance of the motor drive is improved while circumventing the need to tune the proportional-integral (PI) controller. The self-sensing speed control performance of the IPMSM drive was enhanced significantly by the designed cascaded control model.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2010 ◽  
Vol 20 (3) ◽  
pp. 337-343 ◽  
Author(s):  
Wim Michiels ◽  
Tomáš Vyhlídal ◽  
Pavel Zítek

Sign in / Sign up

Export Citation Format

Share Document