scholarly journals Parameterized Uncertainty Model Using a Genetic Algorithm With Application to an Electro-Hydraulic Valve Control System

Author(s):  
Zuheng Kang ◽  
Bahaa I. Kazem ◽  
Roger C. Fales

This work proposes a new method of determining a parameterization of an uncertainty model using a genetic algorithm. A genetic algorithm is used in a unique way to solve the non-convex parameterization problem in this work. The methods presented here are demonstrated on an electrohydraulic valve control system problem. This demonstration includes parameterizing an uncertainty class determined from test data for 30 replications of an electrohydraulic flow control valve. The parameterization of the uncertainty is used to analyze the robust stability of a control system for a class of valves.

Author(s):  
Zuheng Kang ◽  
Roger C. Fales ◽  
Bahaa Ansaf

This work uses a new method of determining a parameterization, resampling, and dimension search of an uncertainty model that can be used for efficient engineering models in control design. An algorithm using the Cayley–Menger determinant as a measure of the dimension test geometry (volume/area/length) of the parametric data points is presented to search for a reduced number of dimensions that can be used to represent the parameters of a model that captures the uncertainty in a dynamic system (uncertainty model). A genetic algorithm (GA) is utilized to solve the nonconvex problem of finding the coefficients of a parameterization of the uncertainty model. A resampling approach for the uncertainty model is also presented. The methods presented here are demonstrated on an electrohydraulic valve control system problem. This demonstration includes consideration of the dimensional search, data resampling, and parameterizing of an uncertainty class determined from test data for 30 replications of an electrohydraulic flow control valve which were experimentally modeled in the lab. The suggested resampling method and the parameterization of the uncertainty are used to analyze the robust stability of a control system for the class of valves using both frequency domain h-infinity methods and analysis of closed-loop poles for the resampled uncertainty model.


2011 ◽  
Vol 121-126 ◽  
pp. 1646-1650
Author(s):  
Qing Hui Wang ◽  
Zhang Yong Wu ◽  
Jing Tao Wang ◽  
Zhen Hua Duan ◽  
Xi Wu ◽  
...  

A magnetorheological digital flow control valve is designed using magnetorheological fluid (MRF) magnetorheological characteristics. The paper gives the magnetorheological digital flow control valve’s structure and mathematical model, and according to the working condition, proposes using the pulse width modulation (PWM) control mode which is one of the digital valve control modes to realize the flow control. Simulation analysis has been done and the results show that the magnetorheological digital flow control valve has good static performance, high frequency switching speed and response,easy to realize intelligent control.


Author(s):  
Zachary D. Wagner ◽  
Roger Fales

Certain types of Load-sensing (LS) pumps utilize a hydro-mechanical control system designed to regulate the pressure difference, or margin pressure, between the inlet and outlet of a flow control valve. With a constant margin pressure, predictable flow control can be achieved by controlling the orifice area of the flow control valve. In this work, the stability of the pressure control system will be investigated. A combination of linear analysis and nonlinear analysis is employed to assess the stability of a particular LS pump system. Among many nonlinearities present in the hydro-mechanical system, of particular interest is the saturation inherent in the actuator that is used to displace the pump swash plate and the saturation within the 3-way spool valve that permits flow to reach the actuator. This saturation nonlinearity has been isolated from the rest of the system to enable stability analysis. Analysis of model characteristics is used to make conclusions about the stability of the system consisting of interconnected linear and nonlinear portions. The stability analysis is compared to results obtained through a simulation study using a nonlinear model based on first principles.


Author(s):  
Yohichi Nakao ◽  
Hajime Niimiya ◽  
Takuya Obayashi

Water-driven spindle was developed for producing small and precise parts by the diamond turning processes. Rotational speed of the spindle can be controlled by the flowrate supplied to the spindle. The paper describes a newly developed rotary-type flow control valve that is designed for controlling rotational speed of the water-driven spindle. In particular, the paper focuses on the establishment of the mathematical model capable of representing the characteristics of the open loop control system composed of the pump, flow control valve and spindle. Mathematical models are then derived so that a feedback control system can be designed using the models. Performances of the flow control valve and the spindle are examined through simulation as well as experiments. It is then verified that the derived mathematical models are capable of representing the performance of the system. In addition, the required positioning accuracy of valve rotation for achieving desired control of the rotational speed of the spindle is considered based on the derived linearized mathematical model.


2009 ◽  
Vol 2009.18 (0) ◽  
pp. 103-104
Author(s):  
Akiyoshi UEKURA ◽  
Hiroyuki KATO ◽  
Kouji ASANO ◽  
Daisuke SHINAGAWA ◽  
Shoji NEGORO

Author(s):  
Yang Yang ◽  
Yongjian Zhao ◽  
Songyi Zhong ◽  
Yan Peng ◽  
Yi Yang ◽  
...  

2003 ◽  
Vol 36 (5) ◽  
pp. 861-866 ◽  
Author(s):  
A. Marciniak ◽  
C.D. Bocăială ◽  
R. Louro ◽  
J. Sa da Costa ◽  
J. Korbicz

Sign in / Sign up

Export Citation Format

Share Document