scholarly journals Optimal Scheduling of Home Energy Management System With Plug-In Electric Vehicles Using Model Predictive Control

Author(s):  
Yue Zhao ◽  
Yan Chen ◽  
Brian Keel

For a household microgrid with renewable photovoltaic (PV) panel and plug-in electric vehicles (PEVs), a home energy management system (HEMS) using model predictive control (MPC) is designed to achieve optimal PEV charging and energy flow scheduling. Soft electric loads and an energy storage system (ESS) are also considered in the optimization of PEV charging in the MPC framework. The MPC is solved through a mixed-integer linear programming (MILP) by considering the relationship of energy flows in the optimization problem. Through the simulation results, the performance of optimization results under various electricity price plans is evaluated. The influences of PV capacities on the optimization results of electricity cost are also discussed.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3323 ◽  
Author(s):  
Bharath Rao ◽  
Friederich Kupzog ◽  
Martin Kozek

Most typical distribution networks are unbalanced due to unequal loading on each of the three phases and untransposed lines. In this paper, models and methods which can handle three-phase unbalanced scenarios are developed. The authors present a novel three-phase home energy management system to control both active and reactive power to provide per-phase optimization. Simplified single-phase algorithms are not sufficient to capture all the complexities a three-phase unbalance system poses. Distributed generators such as photo-voltaic systems, wind generators, and loads such as household electric and thermal demand connected to these networks directly depend on external factors such as weather, ambient temperature, and irradiation. They are also time dependent, containing daily, weekly, and seasonal cycles. Economic and phase-balanced operation of such generators and loads is very important to improve energy efficiency and maximize benefit while respecting consumer needs. Since homes and buildings are expected to consume a large share of electrical energy of a country, they are the ideal candidate to help solve these issues. The method developed will include typical distributed generation, loads, and various smart home models which were constructed using realistic models representing typical homes in Austria. A control scheme is provided which uses model predictive control with multi-objective mixed-integer quadratic programming to maximize self-consumption, user comfort and grid support.


2019 ◽  
Vol 11 (22) ◽  
pp. 6287 ◽  
Author(s):  
Aqib Jamil ◽  
Turki Ali Alghamdi ◽  
Zahoor Ali Khan ◽  
Sakeena Javaid ◽  
Abdul Haseeb ◽  
...  

The feature of bidirectional communication in a smart grid involves the interaction between consumer and utility for optimizing the energy consumption of the users. For optimal management of the energy at the end user, several demand side management techniques are implemented. This work proposes a home energy management system, where consumption of household appliances is optimized using a hybrid technique. This technique is developed from cuckoo search algorithm and earthworm algorithm. However, there is a problem in such home energy management systems, that is, an uncertain behavior of the user that can lead to force start or stop of an appliance, deteriorating the purpose of scheduling of appliances. In order to solve this issue, coordination among appliances for rescheduling is incorporated in home energy management system using game theory. The appliances of the home are categorized in three different groups and their electricity cost is computed through the real-time pricing signals. Optimization schemes are implemented and their performance is scrutinized with and without coordination among the appliances. Simulation outcomes display that our proposed technique has minimized the total electricity cost by 50.6% as compared to unscheduled cost. Moreover, coordination among appliances has helped in increasing the user comfort by reducing the waiting time of appliances. The Shapley value has outperformed the Nash equilibrium and zero sum by achieving the maximum reduction in waiting time of appliances.


Author(s):  
Sandeep Kakran ◽  
Saurabh Chanana

Abstract Demand response (DR) programs have become powerful tools of the smart grids, which provide opportunities for the end-use consumers to participate actively in the energy management programs. This paper investigates impact of different DR strategies in a home-energy management system having consumer with regular load, electric vehicle (EV) and battery-energy storage system (BESS) in the home. The EV is considered as a special type of load, which can also work as an electricity generation source by discharging the power in vehicle-to-home mode during high price time. BESS and a small renewable energy source in form of rooftop photovoltaic panels give a significant contribution in the energy management of the system. As the main contribution to the literature, a mixed integer linear programming based model of home energy management system is formulated to minimize the daily cost of electricity consumption under the effect of different DR programs; such as real time price based DR program, incentive based DR program and peak power limiting DR program. Finally, total electricity prices are analysed in the case studies by including different preferences of the household consumer under mentioned DR programs. A total of 26.93 % electricity cost reduction is noticed with respect to base case, without peak limiting DR and 19.93 % electricity cost reduction is noticed with respect to base case, with peak limiting DR.


2021 ◽  
Vol 7 ◽  
pp. 9094-9107
Author(s):  
Rasha Elazab ◽  
Omar Saif ◽  
Amr M.A. Amin Metwally ◽  
Mohamed Daowd

2019 ◽  
Vol 11 (19) ◽  
pp. 5436 ◽  
Author(s):  
Galvan ◽  
Mandal ◽  
Chakraborty ◽  
Senjyu

With the development of distributed energy resources (DERs) and advancements in technology, microgrids (MGs) appear primed to become an even more integral part of the future distribution grid. In order to transition to the smart grid of the future, MGs must be properly managed and controlled. This paper proposes a microgrid energy management system (MGEMS) based on a hybrid control algorithm that combines Transactive Control (TC) and Model Predictive Control (MPC) for an efficient management of DERs in prosumer-centric networked MGs. A locally installed home energy management system (HEMS) determines a charge schedule for the battery electric vehicle (BEV) and a charge–discharge schedule for the solar photovoltaic (PV) and battery energy storage system (BESS) to reduce residential customers’ operation cost and to improve their overall savings. The proposed networked MGEMS strategy was implemented in IEEE 33-bus test system and evaluated under different BEV and PV-BESS penetration scenarios to study the potential impact that large amounts of BEV and PV-BESS systems can have on the distribution system and how different pricing mechanisms can mitigate these impacts. Test results indicate that our proposed MGEMS strategy shows potential to reduce peak load and power losses as well as to enhance customers’ savings.


2018 ◽  
Vol 40 (8) ◽  
pp. 2498-2508 ◽  
Author(s):  
Hasan İzmitligil ◽  
Hanife Apaydn Özkan

In this study, an offline home energy management system that reduces electricity expense and peak demand without deteriorating residents’ contentment is considered. The main goal is to improve the system in the sense of reducing electricity expense, via interfering with appliances by means of interrupting as well as shifting their operation; and keeping up with the benefits of the newest technology, via plug-in hybrid electrical vehicle integration. The proposed offline home energy management system (OF-HEM) consists of smart electrical appliances, power resources (photovoltaic system, grid, backup battery), main controller, communication network and plug-in hybrid electrical vehicle. The main controller manages the power resources, appliances and plug-in hybrid electrical vehicle based on the solution of a mixed integer linear program with defined smart and energy-efficient operation constraints related to the smart appliances and power sources for data collected at the beginning of the day from the power resources and residents’ preferences. Conducted case studies demonstrate that OF-HEM significantly reduces electricity expenses and high peak demand.


Sign in / Sign up

Export Citation Format

Share Document