Technical and Economic Analysis of a Waste-to-Energy Plant for Austin, Texas Under a Range of Greenhouse Gas Emissions Prices

Author(s):  
Aaron K. Townsend ◽  
Michael E. Webber

Technical and economic metrics of electricity generation from a Waste to Energy (WTE) plant are compared to coal, natural gas combined cycle, biomass, and landfill gas generation alternatives for Austin, Texas under a range of greenhouse gas emissions prices. The WTE technology and history is described, as well as details relevant to a WTE plant in Austin. Technical and economic values for WTE from the literature are discussed. The upper limit of electricity generation from Austin’s MSW stream is 5% of Austin’s 2007 annual electricity consumption. Selection of appropriate values for capital, operating, and fuel costs indicates that WTE is more expensive than all of the alternative generation technologies considered (coal, natural gas combined cycle, landfill gas, and biomass). If greenhouse gas emissions are priced and offsets from fugitive landfill gas emissions are allowed, WTE becomes more cost-competitive by taking credit for offset landfill gas emissions. Under this scenario WTE becomes cost-competitive with biomass at $33 per ton CO2 equivalent, coal at $92 per ton CO2 equivalent, and natural gas at $115 per ton CO2 equivalent.

2014 ◽  
Author(s):  
◽  
Rodolfo Lacy Tamayo

Early projects of Carbon Capture, Use and Geological Storage (CCUS) could be feasible when fossil fuel-power plants are close to oil and gas reservoirs where CO2-Enhanced Oil Recovery (EOR) technologies are applicable. This Thesis includes estimates for greenhouse gas (GHG) emissions caused in a hypothetical CCUS case with a Natural Gas Combined Cycle power plant (NGCC), which were obtained by using Life-Cycle Assessment (LCA) methodology. This research comprises a comparison with other electricity-generation technologies, including Super Critical Pulverized Carbon (SCPC), NGCC without CO2 capture, geothermal, mini-hydro, wind and nuclear ones. The LCA stages that were undertaken in this study were natural gas supply system, electricity generation, CO2 capture, CO2 transport, EOR operations and environmental monitoring. Three different functional units were used in this study: MJ, kWh and produced oil barrel (bbl). Results indicate that energy produced by the described CCUS system has an environmental impact on climate change of 0.044 kgCO2e/MJ. The NGCC power plant with carbon capture unit would produce 0.177 kgCO2e/kWh, representing about 21% and 36% of the estimated values for the SCPC and NGCC (without CCS) cases respectively, and about 24% less greenhouse gas emissions than the geothermal scenario. The oil produced in the EOR activity has a greenhouse gas emissions of 38 kgCO2e/bbl, 37% less than the historical average in the US. In a “well to well” approach, closing the carbon cycle during primary energy production may become a competitive technology to renewable energy sources.


2021 ◽  
pp. 129530
Author(s):  
Wally Contreras ◽  
Chris Hardy ◽  
Kaylene Tovar ◽  
Allison M. Piwetz ◽  
Chad R. Harris ◽  
...  

2017 ◽  
Vol 168 ◽  
pp. 36-45 ◽  
Author(s):  
David C. Quiros ◽  
Jeremy Smith ◽  
Arvind Thiruvengadam ◽  
Tao Huai ◽  
Shaohua Hu

2019 ◽  
Vol 01 (02) ◽  
pp. 1950006
Author(s):  
ARSHAD RAZA ◽  
RAOOF GHOLAMI ◽  
MINOU RABIEI ◽  
VAMEGH RASOULI ◽  
REZA REZAEE

Pakistan is ranked in the 7th position among the affected countries by climate changes. Although many studies have been done on the impacts of climate change in Pakistan, little attention has been given to the need for an energy transition and reduction of greenhouse gas emissions in this country. This study highlights the needs of the national energy transition in Pakistan to reduce the greenhouse gas emissions. Considering the fact that natural gas has lower greenhouse gas emission than coal or oil, Pakistan needs to shift its energy system towards natural gas in the near future. Meanwhile, Pakistan government should take key measures and revise energy policies to support such energy transition by making large gas discoveries, increasing energy conversion systems, and implementing renewable and sustainable energies.


2011 ◽  
Vol 51 (2) ◽  
pp. 686
Author(s):  
Susie Smith

Transforming the way Australia produces and uses energy must be a cornerstone of a national response to addressing greenhouse gas emissions. Natural gas can deliver significant greenhouse gas emission reductions at a fraction of the cost of alternative technologies. To drive this forward, industry is looking for policy certainty and a level playing field. Furthermore, there exists the opportunity to leverage other low emission technologies from gas—for example, the integration of natural gas combined cycle generation with a solar thermal array offers an opportunity to enable the early deployment of solar thermal technology in Australia. Integration can deliver a power outcome at lower cost and with higher conversion efficiencies than an equivalent stand-alone solar thermal facility.


Sign in / Sign up

Export Citation Format

Share Document