scholarly journals Análisis de ciclo de vida de la captura, uso y almacenamiento del bióxido de carbono de una central de generación eléctrica para la recuperación mejorada de petróleo

2014 ◽  
Author(s):  
◽  
Rodolfo Lacy Tamayo

Early projects of Carbon Capture, Use and Geological Storage (CCUS) could be feasible when fossil fuel-power plants are close to oil and gas reservoirs where CO2-Enhanced Oil Recovery (EOR) technologies are applicable. This Thesis includes estimates for greenhouse gas (GHG) emissions caused in a hypothetical CCUS case with a Natural Gas Combined Cycle power plant (NGCC), which were obtained by using Life-Cycle Assessment (LCA) methodology. This research comprises a comparison with other electricity-generation technologies, including Super Critical Pulverized Carbon (SCPC), NGCC without CO2 capture, geothermal, mini-hydro, wind and nuclear ones. The LCA stages that were undertaken in this study were natural gas supply system, electricity generation, CO2 capture, CO2 transport, EOR operations and environmental monitoring. Three different functional units were used in this study: MJ, kWh and produced oil barrel (bbl). Results indicate that energy produced by the described CCUS system has an environmental impact on climate change of 0.044 kgCO2e/MJ. The NGCC power plant with carbon capture unit would produce 0.177 kgCO2e/kWh, representing about 21% and 36% of the estimated values for the SCPC and NGCC (without CCS) cases respectively, and about 24% less greenhouse gas emissions than the geothermal scenario. The oil produced in the EOR activity has a greenhouse gas emissions of 38 kgCO2e/bbl, 37% less than the historical average in the US. In a “well to well” approach, closing the carbon cycle during primary energy production may become a competitive technology to renewable energy sources.

Author(s):  
Aaron K. Townsend ◽  
Michael E. Webber

Technical and economic metrics of electricity generation from a Waste to Energy (WTE) plant are compared to coal, natural gas combined cycle, biomass, and landfill gas generation alternatives for Austin, Texas under a range of greenhouse gas emissions prices. The WTE technology and history is described, as well as details relevant to a WTE plant in Austin. Technical and economic values for WTE from the literature are discussed. The upper limit of electricity generation from Austin’s MSW stream is 5% of Austin’s 2007 annual electricity consumption. Selection of appropriate values for capital, operating, and fuel costs indicates that WTE is more expensive than all of the alternative generation technologies considered (coal, natural gas combined cycle, landfill gas, and biomass). If greenhouse gas emissions are priced and offsets from fugitive landfill gas emissions are allowed, WTE becomes more cost-competitive by taking credit for offset landfill gas emissions. Under this scenario WTE becomes cost-competitive with biomass at $33 per ton CO2 equivalent, coal at $92 per ton CO2 equivalent, and natural gas at $115 per ton CO2 equivalent.


Author(s):  
G. Manzolini ◽  
J. W. Dijkstra ◽  
E. Macchi ◽  
D. Jansen

The paper investigates the application of a novel concept, based on a membrane reactor with permeate side combustion (MRPC), to capture CO2, in a natural gas fuelled power plant. The MRPC combines the steam reforming reaction on the feed side and hydrogen separation through a dense hydrogen selective membrane, with combustion of part of the permeated hydrogen, using a mixture of steam, nitrogen and air as a sweep gas. The remaining hydrogen permeated is used in the gas turbine of the combined cycle. The unconverted fuel in the high pressure CO2 rich stream exiting from the membrane reactor is burned with oxygen to permit carbon dioxide sequestration. The thermodynamic performance and economic prospects of a power plant incorporating MRPC are investigated, with a sensitivity analysis on several parameters involved. The membrane surface area required is calculated using a membrane reactor model. The final results indicate a carbon capture ratio of 100% and a net overall efficiency close to 50%. If compared to a conventional natural gas fuelled combined cycle without CO2 capture, this technology leads to an increase in cost of electricity of about 30% and a CO2 avoidance cost of about 30 €/tCO2.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3055 ◽  
Author(s):  
Yue Hu ◽  
Yachi Gao ◽  
Hui Lv ◽  
Gang Xu ◽  
Shijie Dong

Although carbon mitigation in power industry is attracting more and more attention around the world, the large scale application of carbon capture technology is obstructed because of the enormous energy consumption and huge capital investment required. In this study, an integrated system with power generation, CO2 capture and heat supply are proposed, which adopts three measures to reutilize the waste heat released from the CO2 capture process, including extracted steam recirculation, a CO2 Rankine cycle and a radiant floor heat subsystem. Amongst these measures, the radiant floor heat subsystem can efficiently reuse the relatively low temperature waste energy in the absorbent cooler. Through thermodynamic analysis, it is determined that the power output of the new integrated system is 19.48 MW higher compared with the decarbonization Natural Gas Combined Cycle (NGCC) power plant without system integration. On the other hand, 247.59 MW of heat can be recovered through the radiant floor heat subsystem, leading to an improved overall energy efficiency of 73.6%. In terms of the economic performance, the integration requires only 2.6% more capital investment than a decarbonization NGCC power plant without system integration and obtains extra revenue of 3.40 $/MWh from the simultaneous heat supply, which reduces the cost of CO2 avoided by 22.3%. The results prove the economic and efficiency potential of a NGCC power plant integrated with carbon capture, which may promote the industrial demonstration of carbon capture theology.


2014 ◽  
Vol 63 ◽  
pp. 2394-2401
Author(s):  
Satoshi Saito ◽  
Norihide Egami ◽  
Toshihisa Kiyokuni ◽  
Mitsuru Udatsu ◽  
Hideo Kitamura ◽  
...  

2021 ◽  
pp. 129530
Author(s):  
Wally Contreras ◽  
Chris Hardy ◽  
Kaylene Tovar ◽  
Allison M. Piwetz ◽  
Chad R. Harris ◽  
...  

2017 ◽  
Vol 168 ◽  
pp. 36-45 ◽  
Author(s):  
David C. Quiros ◽  
Jeremy Smith ◽  
Arvind Thiruvengadam ◽  
Tao Huai ◽  
Shaohua Hu

Sign in / Sign up

Export Citation Format

Share Document