Engineering the Photoanode Using Scalable Hybrid Nanostructures

Author(s):  
Thad Druffel ◽  
Venkat Kalyan Vendra ◽  
Delaina Amos ◽  
Mahendra Sunkara

Dye sensitized solar cells (DSSCs) have garnered a great deal of interest as a cost-effective technology for large-scale manufacturing. Engineered inorganic hybrid nanostructures can improve the performance of DSSC’s without affecting the cost effectiveness of the devices. Here, we present a concept of engineered hybrid nanostructures, incorporating appropriate selection of nanowire and nanoparticle materials, to enhance the charge transport and reduce the recombination within the photoanode. Low recombination properties of this photoanode allow flexibility in choosing the redox couple for increasing open circuit voltage.

2020 ◽  
Vol 8 (3) ◽  
pp. 1279-1287 ◽  
Author(s):  
Ellie Tanaka ◽  
Hannes Michaels ◽  
Marina Freitag ◽  
Neil Robertson

Co-sensitization can reduce the cost of a dye-sensitized solar cell, while maintaining high efficiency: up to 29% in ambient light.


2007 ◽  
Vol 1013 ◽  
Author(s):  
Kinji Onoda ◽  
Supachai Ngamsinlapasathian ◽  
Takuya Fujieda ◽  
Susumu Yoshikawa

AbstractThe photovoltaic properties of dye-sensitized solar cells (DSCs) based on fluorine doped tin oxide (FTO) and Ti substrates were investigated. The sheet resistances of the substrates were correlated to the photovoltaic properties. The efficiency of the Ti substrate based DSC was higher than that of the FTO substrate based DSC, due to a high fill factor (FF). To minimize the internal resistance of the DSCs, Ti plate was used as a support for nanocrystalline TiO2, because of its low sheet resistance. As the light was absorbed by the electrolyte layer, the incident photon to current efficiency (IPCE) values decreased in the range between 400-600 nm. The electrolyte concentrations were optimized to obtain a higher cell performance. When using an electrolyte composed of 0.02 M I2, 0.2 M LiI, and 0.5 M 4-tert-butylpyridine, an efficiency of 4.98% was obtained for the Ti substrate based DSC with a short circuit current density (Jsc) of 11.25 mAcm-2, an open circuit voltage (Voc) of 0.692 V, and a FF of 0.639. The effect of the cell size on the photovoltaic properties was also investigated. The rate of decrease in a FF and efficiency with increase in the cell size was lower for the Ti substrate based DSCs than the FTO substrate based DSCs. This result indicates that Ti plate is a potential candidate for production of large DSCs.


2018 ◽  
Vol 21 (1) ◽  
pp. 15-23
Author(s):  
Thuy-Duy Thi Nguyen ◽  
Phuong Tuyet Nguyen ◽  
Phuong Hoang Tran

This research aims to develop a new type of electrolyte for dye-sensitized solar cells (DSCs) which can be produced in cost-effective and large scale. DSCs using deep eutectic solvents (DESs) mixed with ethanol (50% w/w DES content), as an electrolyte medium, was studied herein for the first time. Ten types of DESs were synthesized and three among them were potential candidates for DSC electrolytes. Compared to toxic and volatile organic solvents, this mixed solvent is more eco-friendly and inexpensive. According to J-V curve measurements, DSCs that used DES-ethanol medium showed promising photovoltaic performance.


2021 ◽  
Vol 45 (5) ◽  
pp. 2470-2477
Author(s):  
P. Golvari ◽  
E. Nouri ◽  
N. Mohsenzadegan ◽  
M. R. Mohammadi ◽  
S. O. Martinez-Chapa

Cost-effective DSCs with superior electronic properties are gained by a reduction in electronic trap states and outstanding light scattering and harvesting.


2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


2013 ◽  
Vol 8 (9) ◽  
pp. 2144-2153 ◽  
Author(s):  
Ram B. Ambre ◽  
Gao-Fong Chang ◽  
Manoj R. Zanwar ◽  
Ching-Fa Yao ◽  
Eric Wei-Guang Diau ◽  
...  

2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


Sign in / Sign up

Export Citation Format

Share Document