scholarly journals Automatic Procedures as Help for Optimal Cam Design

Author(s):  
Massimo Antonini ◽  
Alberto Borboni ◽  
Roberto Bussola ◽  
Rodolfo Faglia

In this work we suggest a synthesis of recent results obtained on the application of soft-computing techniques to solve typical automatic machines design problems. Particularly, here we show an optimization method based on the application of a specialized algorithms ruled by a generalized software procedures, which appears able to help the mechanical designer in the first part of the design process, when he has to choose among different wide classes of solutions. In this frame, among the different problems studied, we refer here about the choice of the best class of motion profiles, to be imposed to a cam follower, which must satisfy prefixed design specifications. A realistic behaviour of the system is considered and the parameter model identification is set up by a soft computing procedure. The design, based on theoretical knowledge, sometimes is not sufficient to fulfil desired dynamical performances, in this situation, a residual optimization is achieved with the help of another optimizing method. The problem of a cam-follower design is presented. A class of motion profiles and the best theoretical motion profile is selected by an evolutionary algorithm. A realistic model is considered and its parameter identification is achieved by a genetic algorithm. The residual optimization is achieved by a servomotor optimized by another genetic algorithm. Evolutionary approach is used during all the design process and, as was shown, it allows really interesting performance in terms of simplicity of the design process and in terms of performance of the product.

2015 ◽  
Vol 783 ◽  
pp. 83-94
Author(s):  
Alberto Borboni

In this work, the optimization problem is studied for a planar cam which rotates around its axis and moves a centered translating roller follower. The proposed optimization method is a genetic algorithm. The paper deals with different design problems: the minimization of the pressure angle, the maximization of the radius of curvature and the minimization of the contact pressure. Different types of motion laws are tested to found the most suitable for the computational optimization process.


Author(s):  
Krzysztof Patan ◽  
Marcin Witczak ◽  
Józef Korbicz

Towards Robustness in Neural Network Based Fault DiagnosisChallenging design problems arise regularly in modern fault diagnosis systems. Unfortunately, classical analytical techniques often cannot provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as neural networks become more and more popular in industrial applications of fault diagnosis. Taking into account the two crucial aspects, i.e., the nonlinear behaviour of the system being diagnosed as well as the robustness of a fault diagnosis scheme with respect to modelling uncertainty, two different neural network based schemes are described and carefully discussed. The final part of the paper presents an illustrative example regarding the modelling and fault diagnosis of a DC motor, which shows the performance of the proposed strategy.


Cryptography ◽  
2020 ◽  
pp. 180-191
Author(s):  
Harsh Bhasin ◽  
Naved Alam

Cryptanalysis refers to finding the plaintext from the given cipher text. The problem reduces to finding the correct key from a set of possible keys, which is basically a search problem. Many researchers have put in a lot of effort to accomplish this task. Most of the efforts used conventional techniques. However, soft computing techniques like Genetic Algorithms are generally good in optimized search, though the applicability of such techniques to cryptanalysis is still a contentious point. This work carries out an extensive literature review of the cryptanalysis techniques, finds the gaps there in, in order to put the proposed technique in the perspective. The work also finds the applicability of Cellular Automata in cryptanalysis. A new technique has been proposed and verified for texts of around 1000 words. Each text is encrypted 10 times and then decrypted using the proposed technique. The work has also been compared with that employing Genetic Algorithm. The experiments carried out prove the veracity of the technique and paves way of Cellular automata in cryptanalysis. The paper also discusses the future scope of the work.


The Travelling salesman problem also popularly known as the TSP, which is the most classical combinatorial optimization problem. It is the most diligently read and an NP hard problem in the field of optimization. When the less number of cities is present, TSP is solved very easily but as the number of cities increases it gets more and more harder to figure out. This is due to a large amount of computation time is required. So in order to solve such large sized problems which contain millions of cities to traverse, various soft computing techniques can be used. In this paper, we discuss the use of different soft computing techniques like Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and etc. to solve TSP.


Author(s):  
Kikuo Fujita ◽  
Noriyasu Hirokawa ◽  
Shinsuke Akagi ◽  
Shinji Kitamura ◽  
Hideaki Yokohata

Abstract A genetic algorithm based optimization method is proposed for a multi-objective design problem of an automotive engine, that includes several difficulties in practical engineering optimization problems. While various optimization techniques have been applied to engineering design problems, a class of realistic engineering design problems face on a mixture of different optimization difficulties, such as the rugged nature of system response, the numbers of design variables and objectives, etc. In order to overcome such a situation, this paper proposes a genetic algorithm based multi-objective optimization method, that introduces Pareto-optimality based fitness function, similarity based selection and direct real number crossover. This optimization method is also applied to the design problem of an automotive engine with the design criteria on a total power train. The computational examples show the ability of the proposed method for finding a relevant set of Pareto optima.


2020 ◽  
Vol 7 (6) ◽  
pp. 30-42
Author(s):  
Victor Ekong

Soft computing, as a science of modelling systems, applies techniques such as evolutionary computing, fuzzy logic, and their hybrids to solve real life problems. Soft computing techniques are quite tolerant to incomplete, imprecise, and uncertainty when dealing with complex situations. This study adopts a hybrid of genetic algorithm and fuzzy logic in diagnosing hormonal imbalance. Hormones are chemical messengers that are vital for growth, reproduction, and are essential for human existence. Hormones may sometimes not be balanced which is a medical condition that often go unnoticed and it’s quite difficult to be diagnosed by medical experts. Hormonal imbalance has several symptoms that could also be confused for other ailments. This proposed system serves as support for medical experts to improve the precision of diagnosis of hormonal imbalance. The study further demonstrates the effective hybridization of genetic algorithm and fuzzy logic in resolving human problems.


Now-a-days, there is a growing demand for image processing. The target of image enhancement is to find details present in images having low luminance for better image quality. Enhancement is required to improve the picture quality. In this process, we can enhance an image, by applying the suitable technique. In enhancement, there is a conversion in image contrast, quality, color vision, brightness, clarity etc. So we need image enhancement. A comparative survey is carried out in this paper, explaining traditional and soft computing techniques. This paper clarifies a study of traditional such as edge detection of an image and fuzzy logic based soft computing for improvement of an image. In the result section output of image is shown as edges using traditional as well as fuzzy. A small description is also study for picture improvement using different soft computing and optimization techniques such as Neural network, Convolution Neural Network, Ant Bee Colony, Particle Swarm Optimization etc. in literature survey and in comparative table. It is concluded that Image enhancement can be done by traditional method, soft computing and optimization method. Image enhancement has found various vision applications that have the ability to enhance the visibility of images. To enhance an image it is very important that image should be clear, so before using the enhancement techniques we should need to learn about the enhancement. So this paper described a survey of image enhancement with different techniques. In future scope of this paper we can find out different type of parameters like PSNR, MSE and execution time, also we can use optimization technique. We are also showing a comparison table of image enhancement based on traditional, soft computing and optimization techniques with its open scope.


Sign in / Sign up

Export Citation Format

Share Document