Mass Detection With Nonlinear Nanomechanical Resonators

Author(s):  
Eyal Buks

Nanomechanical resonators having small mass, high resonance frequency and low damping rate are widely employed as mass detectors. We study the performance of such a detector when the resonator is driven into a region of nonlinear oscillations [1]. We predict theoretically that the mass sensitivity of the device in this region may exceed the upper bound imposed by thermo-mechanical noise upon the sensitivity when operating in the linear region. On the other hand, we find that the high mass sensitivity is accompanied by a slow response of the system to a change in the mass. For experimental demonstration we employ homodyne detection (see Fig. 1) for readout of the output signal of an optical displacement detector, which monitors the motion of a doubly clamped nanomechanical resonator made of Pd-Au [2, 3]. The nanomechanical resonator is driven into the region of nonlinear oscillations (see Fig. 2) and the region of bistability is identified (see Fig. 3). As expected theoretically [1] we find that when operating close to the edge of the bistability region the device exhibits strong intermodulation amplification [2] (see Fig. 3). Moreover, strong noise squeezing in the output signal of the homodyne detector is observed in this region [3] (see Fig. 4). An alternative mass detection scheme, in which the resonator is driven into a stochastic resonance, will also be discussed [4].

Author(s):  
Sung K. Koh ◽  
Yong Chul Kim

Novel nanomechanical resonators with high mass sensitivities are designed in an optimal manner. We are concerned with a nanomechanical resonator with step changes in cross section and determine its geometry so as to maximize its mass sensitivity. Since the mass sensitivity is proportional to the fundamental frequency, we decide the geometric shape so as to maximize the fundamental frequency. In particular, we design a cantilever resonator with a single discontinuity in its cross sectional area. As the design space of this design problem is decided by the volume of the resonator, we synthesize it for various prescribed volume constraints. The fundamental frequency is estimated based on the Euler-Bernoulli beam theory. We discovered that there is a unique global optimal solution of this design problem that does not depend on the given volume constraints. The mass sensitivity of optimally designed cantilever resonators is 1.9193 times greater than that of conventional uniform beam type resonators that are designed for the same volume. Consequently, the mass sensitivity of a nanomechanical uniform resonator of constant volume can always be enhanced without regard to its global size by modifying its geometry following the optimal design proposed in this paper.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5069 ◽  
Author(s):  
Martín-Pérez ◽  
Ramos ◽  
Tamayo ◽  
Calleja

Characterization of micro and nanoparticle mass has become increasingly relevant in a wide range of fields, from materials science to drug development. The real-time analysis of complex mixtures in liquids demands very high mass sensitivity and high throughput. One of the most promising approaches for real-time measurements in liquid, with an excellent mass sensitivity, is the use of suspended microchannel resonators, where a carrier liquid containing the analytes flows through a nanomechanical resonator while tracking its resonance frequency shift. To this end, an extremely sensitive mechanical displacement technique is necessary. Here, we have developed an optomechanical transduction technique to enhance the mechanical displacement sensitivity of optically transparent hollow nanomechanical resonators. The capillaries have been fabricated by using a thermal stretching technique, which allows to accurately control the final dimensions of the device. We have experimentally demonstrated the light coupling into the fused silica capillary walls and how the evanescent light coming out from the silica interferes with the surrounding electromagnetic field distribution, a standing wave sustained by the incident laser and the reflected power from the substrate, modulating the reflectivity. The enhancement of the displacement sensitivity due to this interferometric modulation (two orders of magnitude better than compared with previous accomplishments) has been theoretically predicted and experimentally demonstrated.


Author(s):  
Mitesh B. Panchal ◽  
S. H. Upadhyay ◽  
S. P. Harsha

In this paper, the vibration response analysis of single walled boron nitride nanotubes (SWBNNTs) treated as thin walled tube has been done using finite element method (FEM). The resonant frequencies of fixed-free SWBNNTs have been investigated. The analysis explores the resonant frequency variations as well as the resonant frequency shift of the SWBNNTs caused by the changes in size of BNNTs in terms of length as well as the attached masses. The performance of cantilevered SWBNNT mass sensor is also analyzed based on continuum mechanics approach and compared with the published data of single walled carbon nanotube (SWCNT) for fixed-free configuration as a mass sensor. As a systematic analysis approach, the simulation results based on FEM are compared with the continuum mechanics based analytical approach and are found to be in good agreement. It is also found that the BNNT cantilever biosensor has better response and sensitivity compared to the CNT as a counterpart. Also, the results indicate that the mass sensitivity of cantilevered boron nitride nanotube nanomechanical resonators can reach 10−23 g and the mass sensitivity increases when smaller size nanomechanical resonators are used in mass sensors.


2003 ◽  
Vol 82 (16) ◽  
pp. 2697-2699 ◽  
Author(s):  
Nickolay V. Lavrik ◽  
Panos G. Datskos

Author(s):  
Aldo A. J. Glean ◽  
John A. Judge ◽  
Joseph F. Vignola

This paper summarizes a numerical analysis of an eigenmode-based approach for ultrasensitive mass detection via coupled microcantilevers. Mass detection using microcantilevers typically entails the observation of shifts in resonance frequency. Recently, detection systems have been proposed in which multiple cantilever sensors are coupled, either directly or by attachment to a single shuttle mass. Once sensors are coupled, however, mass adsorption on a single sensor alters all eigenmodes of the system. Thus, one disadvantage of the frequency-shift method in such cases is the need for strong mode localization, such that the shift of a single frequency can be associated with a mass change on a specific sensor. The consequent requirement for weak coupling limits the number of microcantilevers that can occupy a specific frequency band. The proposed eigenmode-based detection scheme involves solving the inverse eigenvalue problem to identify added mass, and can be used in cases where more than one eigenfrequency has shifted significantly. The method requires a single measured mode shape and corresponding natural frequency, selected from among those where a shift was observed. The fidelity of the identification of added mass and its location depends on the ability to accurately measure the mode shape, and on the amplitude with which each cantilever vibrates in the chosen mode (in modes without strong localization, multiple cantilevers respond with significant amplitude). Simulation results are presented that quantify, as a function of measurement noise, the ability of the method to accurately identify the cantilever(s) where mass adheres. In cases in which the resonance frequency-shift method is inappropriate due to non-localized modes, the inverse eigenvalue method proposed here can be used to identify both the amount and location of the added mass.


NANO ◽  
2012 ◽  
Vol 07 (04) ◽  
pp. 1250029 ◽  
Author(s):  
MITESH B. PANCHAL ◽  
S. H. UPADHYAY ◽  
S. P. HARSHA

The feasibility of the Boron Nitride Nanotubes (BNNTs) as nanomechanical resonators, using continuum mechanics based approach and finite element method (FEM) is illustrated in this paper. Two types of end constraints of single walled boron nitride nanotubes (SWBNNTs), namely cantilevered and bridged are assumed. Analytical formulas based on continuum mechanics are used to examine the mass sensitivity of SWBNNTs considering as a thin wall tubes for both types of end constraints for different lengths and different diameters. The FEM analysis, considering SWBNNT as a transversely anisotropic material is performed and results are compared with the continuum mechanics based approach. The results indicated that the mass sensitivity of SWBNNT-based nanomechanical resonators can reach 10-8fg and a logarithmically linear relationship exists between the resonant frequency and the attached mass, when mass is larger than 10-7fg. The sensitivity of resonant frequency shift to both tube length and diameter has also been demonstrated. It is clear that the change in resonant frequency shift to tube length is more significant than that with the tube diameter and mass sensitivity increases when smaller size nanotube resonators are used in mass sensors. The simulation results based on present FEM found in good agreement with the analytical approach.


2021 ◽  
Author(s):  
Joshoua Condicion Esmenda ◽  
Myrron Albert Callera Aguila ◽  
Jyh-Yang Wang ◽  
Teik-Hui Lee ◽  
Yen-Chun Chen ◽  
...  

Abstract Studies involving nanomechanical motion have evolved from its detection and understanding of its fundamental aspects to its promising practical utility as an integral component of hybrid systems. Nanomechanical resonators’ indispensable role as transducers between optical and microwave fields in hybrid systems, such as quantum communications interface, have elevated their importance in recent years. It is therefore crucial to determine which among the family of nanomechanical resonators is more suitable for this role. Most of the studies revolve around nanomechanical resonators of ultrathin structures because of their inherently large mechanical amplitude due to their very low mass. Here, we argue that the underutilized nanomechanical resonators made from multilayered two-dimensional (2D) materials are the better fit for this role because of their comparable electrostatic tunability and larger optomechanical responsivity. To show this, we first demonstrate the electrostatic tunability of mechanical modes of a multilayered nanomechanical resonator made from graphite. We also show that the optomechanical responsivity of multilayered devices will always be superior as compared to the few-layer devices. Finally, by using the multilayered model and comparing this device with the reported ones, we find that the electrostatic tunability of devices of intermediate thickness is not significantly lower than that of ultrathin ones. Together with the practicality in terms of fabrication ease and design predictability, we contend that multilayered 2D nanomechanical resonators are the optimal choice for the electromagnetic interface in integrated quantum systems.


Author(s):  
X. L. Feng ◽  
Y. T. Tang ◽  
C. Callegari ◽  
M. L. Roukes

Nanoelectromechanical systems (NEMS) are interesting for both probing nanoscale physical fundamentals and exploring new technological applications [1]. In particular, nanomechanical resonators possess superb attributes including surprisingly-high operating frequency, ultra-small mass, high quality factor (Q), and thus are promising candidates for components in novel signal processing systems and ultra-sensitive sensors [1,2]. NEMS resonators with fundamental resonant frequencies exceeding 1GHz have been realized [3] and unprecedented mass sensitivity has also been demonstrated with VHF high-Q NEMS resonant mass sensors [2,4]. Among many engineering challenges to boost NEMS to more practical applications, it is of great importance to develop the generic protocol of integrating NEMS resonators with feedback and control systems. This work presents the first implementation of the integration of a UHF NEMS resonator with a low-noise phase locked loop (PLL).


2020 ◽  
Vol 12 (37) ◽  
pp. 41991-41998
Author(s):  
Chengming Jiang ◽  
Qikun Li ◽  
Jijie Huang ◽  
Sheng Bi ◽  
Ruonan Ji ◽  
...  

1988 ◽  
Vol 2 (2) ◽  
pp. 30-34 ◽  
Author(s):  
Russell H. Robins ◽  
Frank W. Crow ◽  
Marvin L. Vestal

Sign in / Sign up

Export Citation Format

Share Document