Tribological and Viscoelastic Behaviour of Carbon Black Filled Rubber

Author(s):  
Bohdana Marvalova ◽  
Iva Petri´kova´ ◽  
David Cirkl

The paper describes a complex experimental research of tribological and mechanical properties of styrene-butadiene-rubber (SBR) filled with carbon black. Tribological properties of SBR rubber material are investigated experimentally using a home made device of ball-on-disc type. The response of SBR in sliding friction depends on sliding speed and on the loading force. The rate-dependent behaviour of carbon-black filled rubber is investigated in tensile tests with different loading rates and in relaxation tests. The viscosity-induced rate-dependent effects are described. The storage and loss moduli and phase angle δ dependency on different amplitudes and frequencies are determined by strain controlled dynamical mechanical analysis. The temperature dependence of dynamic and tribological behaviour of SBR is also investigated.

2012 ◽  
Vol 19 (01) ◽  
pp. 1250003
Author(s):  
JIAN CHEN ◽  
YONGZHONG JIN ◽  
JINGYU ZHANG ◽  
YAFENG WU ◽  
CHUNCAI MENG

Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene–butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30–50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island–rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.


2013 ◽  
Vol 86 (4) ◽  
pp. 572-578 ◽  
Author(s):  
Julie Diani ◽  
Yannick Merckel ◽  
Mathias Brieu ◽  
Julien Caillard

ABSTRACT The authors compared the mechanical behavior and, more precisely, the Mullins and the cyclic (post-Mullins) softenings of two filled rubbers. A crystallizing natural rubber and a noncrystallizing styrene–butadiene rubber of similar compositions resulting in similar cross-link densities and filled with 40 phr of N347 carbon-black fillers were tested in cyclic uniaxial tension at room temperature and at 85 °C. Crystallization in filled rubbers is known to increase stress at high stretch, stretch at break, cycle hysteresis, and fatigue lifetime and to reduce crack propagation. In this study, it is shown that crystallization also seems to enhance the Mullins softening (softening at the first cycle) and to favor the apparent cyclic softening. Results reveal that natural rubber shows an amplitude dependence on the cyclic softening, whereas the styrene–butadiene rubber does not. Finally, results demonstrate that studying filled rubber softening cannot help predict lifetime.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

Author(s):  
Ruofan Liu ◽  
Erol Sancaktar

Payne and Mullins effects are widely observed in reinforced rubber materials. The mechanisms by which these two effects work are not fully understood. Several models have been proposed, including molecular slippage model, bond rupture model, and filler rupture model. In this study, two different compounds of styrene–butadiene rubber were prepared using carbon black and silica as reinforcement fillers, respectively, and subjected to cyclic fatigue process. Tensile, creep, and relaxation tests were performed on fatigued samples to assess the residual stress–strain behavior by comparing with the results from similar tests using pristine (no fatigue) samples. When the tensile stiffness behavior of fatigued specimens was evaluated, we noted that the stiffness versus strain behavior which exhibited a monotonic decreasing–increasing behavior with the pristine specimens changed to what we call “dual-stiffness” condition, where the specimens went through a first (low) turning point as with the pristine samples, but then dropped off of a peak to go through a second softening stage, similar to the first softening stage of the pristine material. We believe that such spiking (dual) stiffness behavior characterized by a “Peak” point represents a combination of both Payne and the Mullins effects active during fatigue loading. We conclude that molecular slippage and bond rupture are the main factors affecting the physical properties of carbon black-filled compounds, while breakage and recombination of the filler are the key mechanisms affecting the silica-filled compounds during the fatigue process.


Sign in / Sign up

Export Citation Format

Share Document