An Elastic-Plastic Solver of the Wheel-Rail Contact

Author(s):  
Constantin I. Ba˘rbiˆnt¸a˘ ◽  
Sulleyman Yaldiz ◽  
Alina Dragomir ◽  
Spiridon S. Cret¸u

Wheel and rail in service undergo continual wear and plastic deformation at the surface, so that in time all wheel profiles will be different. The optimization by grinding a worn rail profile to minimize contact stresses requires the development of a software to reconstruct a rail profile using circular arcs. A working algorithm, able to be incorporated into a computer code, has been developed to solve the stress state in the general case of non-Hertzian contacts. To limit the pressure, an elastic-perfect plastic material has been incorporated into the computer code. The pressure distribution and the corresponding stresses states have been investigated for pure normal loadings, as well as for the combined, normal and tangential loadings. The elastic-plastic analysis model allows fast investigations regarding the influence of different parameters such as load level, contact geometry including the geometry of the worn profiles.

1969 ◽  
Vol 8 (54) ◽  
pp. 385-397 ◽  
Author(s):  
G. Holdsworth

Abstract Several analyses are given for the flexure of a floating polar ice tongue with the general dimensions of several kilometers wide by 200 in in thickness. The lengths considered are from 2 km to in excess of 10 km which is referred to as a long slab. The analyses are made under the separate assumptions that ice behaves as (1) an elastic material, (2) an elastic-plastic material, and (3) a fully plastic material, when reacting to flexure due to changes in sea-level. The elastic analysis shows that hinge-line stresses could become very high of the order of 15 bar) for slab lengths up to about 3·5 km reacting to sea-level changes of the order of ±50 cm. For slab lengths greater than this, the stresses at the hinge, as well as being significantly less than before, become independent of the length of the slab, dependent only on the slab thickness and the amount of deflection of sea-level. In the elastic-plastic analysis, the hinge-line stress cannot exceed a value of about 2 bar. This yield value is reached when sea-level departs about 50 cm from the mean. The fully plastic analysis requires more accurate knowledge of the constants in the flow law and their variation with density. temperature and salinity within the ice. However, the theory may be tested by measuring the diurnal change in strain-rate across the hinge-line zone. The process of calving of large tabular icebergs from such glacier tongues may demand sea-level changes of more than ± 1 m, or bending about more than one axis of the shelf.


2000 ◽  
Vol 67 (4) ◽  
pp. 793-796 ◽  
Author(s):  
F. D. Fischer ◽  
E. R. Oberaigner

The progress of a transformed phase into an elastic-plastic parent phase is simulated by a growing sphere. The transformation is accompanied by a dilatational volume change. The strain and stress state in the full space is presented. In addition, the local and global energy terms are calculated. Finally the thermodynamic forces on the interface are derived. Also strain hardening is considered. [S0021-8936(00)00304-4]


Author(s):  
Jun Shen ◽  
Heng Peng ◽  
Liping Wan ◽  
Yanfang Tang ◽  
Yinghua Liu

In the past, shakedown evaluation was usually based on the elastic method that the sum of the primary and secondary stress should be limited to 3Sm or the simplified elastic-plastic analysis method. The elastic method is just an approximate analysis, and the rigorous evaluation of shakedown normally requires an elastic-plastic analysis. In this paper, using an elastic perfectly plastic material model, the shakedown analysis was performed by a series of elastic-plastic analyses. Taking a shell with a nozzle subjected to parameterized temperature loads as an example, the impact of temperature change on the shakedown load was discussed and the shakedown loads of this structure at different temperature change rates were also obtained. This study can provide helpful references for engineering design.


1969 ◽  
Vol 8 (54) ◽  
pp. 385-397 ◽  
Author(s):  
G. Holdsworth

AbstractSeveral analyses are given for the flexure of a floating polar ice tongue with the general dimensions of several kilometers wide by 200 in in thickness. The lengths considered are from 2 km to in excess of 10 km which is referred to as a long slab. The analyses are made under the separate assumptions that ice behaves as (1) an elastic material, (2) an elastic-plastic material, and (3) a fully plastic material, when reacting to flexure due to changes in sea-level. The elastic analysis shows that hinge-line stresses could become very high of the order of 15 bar) for slab lengths up to about 3·5 km reacting to sea-level changes of the order of ±50 cm. For slab lengths greater than this, the stresses at the hinge, as well as being significantly less than before, become independent of the length of the slab, dependent only on the slab thickness and the amount of deflection of sea-level. In the elastic-plastic analysis, the hinge-line stress cannot exceed a value of about 2 bar. This yield value is reached when sea-level departs about 50 cm from the mean. The fully plastic analysis requires more accurate knowledge of the constants in the flow law and their variation with density, temperature and salinity within the ice. However, the theory may be tested by measuring the diurnal change in strain-rate across the hinge-line zone. The process of calving of large tabular icebergs from such glacier tongues may demand sea-level changes of more than ± 1 m, or bending about more than one axis of the shelf.


2004 ◽  
Vol 19 (12) ◽  
pp. 3641-3653 ◽  
Author(s):  
L. Kogut ◽  
K. Komvopoulos

A finite element analysis of frictionless indentation of an elastic–plastic half-space by a rigid sphere is presented and the deformation behavior during loading and unloading is examined in terms of the interference and elastic–plastic material properties. The analysis yields dimensionless constitutive relationships for the normal load, contact area, and mean contact pressure during loading for a wide range of material properties and interference ranging from the inception of yielding to the initiation of fully plastic deformation. The boundaries between elastic, elastic–plastic, and fully plastic deformation regimes are determined in terms of the interference, mean contact pressure, and reduced elastic modulus-to-yield strength ratio. Relationships for the hardness and associated interference versus elastic–plastic material properties and truncated contact radius are introduced, and the shape of the plastic zone and maximum equivalent plastic strain are interpreted in light of finite element results. The unloading response is examined to evaluate the validity of basic assumptions in traditional indentation approaches used to measure the hardness and reduced elastic modulus of materials. It is shown that knowledge of the deformation behavior under both loading and unloading conditions is essential for accurate determination of the true hardness and reduced elastic modulus. An iterative approach for determining the reduced elastic modulus, yield strength, and hardness from indentation experiments and finite element solutions is proposed as an alternative to the traditional method.


Author(s):  
V. Sovgira ◽  
V. Sovgira

В статье приведены результаты выполненных исследований механизма интенсивности развития деструкций, псевдопластического деформирования и разрушения однородно и неоднородно сжатого тяжелого бетона призменной прочностью в диапазоне fc1522,265,6 МПа при мягком и жестком режиме нагружения одноосно и внецентренно сжатых бетонных колонн. Выполнен анализ литературных источников с исследованиями изменения упруго-пластических характеристик vc, Еcsek тяжелого бетона с учетом влияния значимых факторов и их изменение с увеличением уровня нагрузки при описании зависимости c-cх и c,е - cх,е. Установлено, что рекомендованные Строительными Нормами vcи и Ес одноосно сжатого бетона количественно и качественно не отражают характер изменения упруго-пластических свойств неоднородно сжатого бетона с ростом уровня нагрузки. Предложены аналитические выражения зависимости изменения коэффициентов упругости (vc, vc,е), секущих модулей упругости (Еcsek, Еc,еsek) и коэффициентов интенсивности развития деструкций (KD, KD,е) однородно и неоднородно сжатого бетона с ростом уровня нагрузки при мягком и жестком режиме нагружения исследованных серий тяжелого бетона с использованием сlx сlx,е Ес Nc,e/Ncu,e сu и сu,е, отражающих процесс изменения упруго-пластических свойств бетона на восходящих и нисходящих участках полных диаграмм деформирования бетона и их существенное отличие при центральном и внецентренном сжатии. Исследованиями отмечено, что интенсивность развития деструкций в структуре неоднородно нагруженного бетона существенно ниже, чем в одноосно сжатом. Экспериментами установлено характерное изменение по высоте сечения внецентренно сжатых бетонных элементов коэффициента поперечных деформаций , свидетельствующее о том, что с увеличением уровня нагрузки коэффициент наиболее сжатой фибры на всех уровнях нагрузки, значительно (в 1,21,5 раза) меньше волокон менее нагруженных фибр. Отмеченное свойство обусловлено изменением внутреннего напряженного состояния с ростом нагрузки и перераспределением напряжений силовыми связями структуры неоднородно сжатого бетона с субмикро- и микроуровней волокон наиболее нагруженной грани по высоте сечения внецентренно сжатых элементов на менее нагруженные волокна. Этот процесс перераспределения напряжений по высоте сечения бетонных колонн как свойство проявляется на изменении поперечной деформации cу,е и, как следствие изменения коэффициента поперечной деформации , влияющего на напряженное состояние сжатой зоны подобно внутренним силовым связям, обеспечивающим существенное повышение максимальных напряжений и деформаций в неоднородно сжатом бетоне.The article presents the results of studies of the intensity of development of destructions, pseudoplastic deformation and destruction of uniformly and non-uniformly compressed heavy concrete with prism strength in the range of fc1522,265,6 MPa in the soft and hard loading mode of uniaxially and eccentrically compressed concrete columns. The analysis of literary sources with studies of changes in the elastic-plastic characteristics of vc, Еcsek heavy concrete, taking into account the influence of significant factors and their change with increasing load level when describing the dependence c-cх and c,е - cх,е . It has been established that the vcu and Ес recommended by the Building Norms of uniaxially compressed concrete do not quantitatively and qualitatively reflect the nature of the change in the elastic-plastic properties of non-uniformly compressed concrete with increasing load levels. Analytical expressions are proposed for the dependence of the change in elasticity coefficients (vc, vc,е), cross-section elastic modulus (Еcsek, Еc,еsek) and the intensity factors for the development of destructions (KD, KD,е) of uniformly and non-uniformly compressed concrete and hard loading mode of the studied series of heavy concrete using: сlx сlx,е Ес Nc,e/Ncu,e сu and сu,е , reflecting the process of changing the elastic-plastic properties of concrete in the ascending and descending parts of the complete concrete deformation diagrams and their significant difference under uniaxial and eccentrically compression. Studies have noted that the intensity of the development of destructions in the structure of non-uniformly loaded concrete is significantly lower than in uniaxially compressed. Experiments established a characteristic change in the height of the cross section of eccentrically compressed concrete elements of the transverse strain coefficient , indicating that with an increase in the load level, the coefficient of the most compressed fiber at all load levels is significant (1,2-1,5 times) less fibers, less loaded fibers. This property is caused by the change in the internal stress state with increasing load and stress redistribution by force bonds of the structure in non-uniformly compressed concrete from submicro- and microlevels of the fibers of the most loaded face along the height of the cross section of eccentrically compressed elements to less loaded fibers. This process of stress redistribution along the height of the cross section of concrete columns as a property manifests itself in a change in transverse deformation cу,е and, as a result, a change in the transverse deformation coefficient , affecting the stress state of the compressed zone, similar to internal force connections, providing a significant increase in maximum stresses and strains in non-uniformly compressed concrete.


1981 ◽  
Vol 103 (1) ◽  
pp. 111-115
Author(s):  
D. P. Updike

Design of connections of pipes and pressure vessels on the basis of a calculated maximum elastic stress often proves to be too conservative in the case of ductile materials. Elastic-plastic analysis by the finite element method proves to be too costly. This paper presents an alternative method which reduces the calculations to those of a rotationally symmetric shell subjected to axisymmetric loading. Using this approach approximate elastic-plastic deformations on the meridian passing through the crotch of a tee branch connection of cylindrical shells of equal diameter and thickness are determined. The method is limited to cases of the normal intersection of very thin shells of identical diameter, thickness, and material and to internal pressure loading. Numerical results for the intersection of two shells of R/t equal to 100 are given for an elastic-perfectly plastic material satisfying the von Mises yield condition.


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

Piping in a nuclear power plant is usually laid across several floors of a single building or adjacent buildings, and is supported at many points. As the piping is excited by a large earthquake through multiple supporting points, seismic response analysis by multiple excitations within the range of plastic deformation of piping material is necessary to obtain the precise seismic response of the piping. The verification of the dynamic analysis method of piping under an elastic domain, which is excited by multiple seismic inputs, was performed in our study last year and the correspondence of a piping response between an analysis and an experiment have been confirmed [17][18]. However, few experiments under plastic deformation conditions have been performed to verify the validity of multiple excitation analysis under a plastic deformation range. To obtain better understanding of the behavior of piping under a large seismic input, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation experiments. This paper reports the validation results of the seismic elastic-plastic time history analysis of piping compared with the results of the shaking test of a 3-dimensional piping model under a plastic deformation range using triple uni-axial shake table. Three directional strains from the analysis and the experiments were compared in order to validate the analysis method. As a result, it is confirmed that the elastic-plastic analysis by time history excitation shows good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document