Diamond Enhanced Shear Cutting Elements on Roller Cone Bits

Author(s):  
Dan E. Scott ◽  
Marc R. Skeem

Abstract Polycrystalline diamond (PCD) cutters and drag bit designs have been substantially improved since their 1972 introduction, and PCD drill bits now are approaching the rolling cone tungsten carbide insert (TCI) market is terms of revenue size and have surpassed it in terms of economic impact on the drilling industry.1,2 These performance improvements have lead to a significant encroachment into the drill bit market built upon the breakthrough invention of the rolling cone bit by Howard Hughes Sr. Material and design improvements in the last decade, however, have now led to the successful application of patented shear cutting PCD elements as well as conventional diamond enhanced crushing style inserts on rolling cone bits. Diamond enhanced rolling cone bits are also a growth market for diamond elements in drilling. Failing rock in shear is a more efficient process than by crushing, but most cutting materials can not stand up to the forces generated in the shearing process as rock strength increases. To take advantage of the unique ability of the PCD cutter to shear rock efficiently, a concerted R&D effort supported by laboratory and field-testing led to the application of diamond as a shear cutting element on roller cone bits. A variety of rolling cone shear cutting elements have been developed and successfully commercialized in the last decade. This paper will discuss laboratory results and increased field performance achieved relative to conventional crushing style diamond and tungsten carbide inserts. The authors will document through case studies increases in rate of penetration (ROP), footage, overall durability, and gauge holding ability in addition to bearing/seal effectiveness that have further reduced drilling costs and served to increase usage of polycrystalline diamond elements on roller cone bits. These applications range from such diverse markets as high cost offshore North Sea, to low cost North American land operations.

2015 ◽  
Vol 813-814 ◽  
pp. 569-574 ◽  
Author(s):  
Muthuswamy Padmakumar ◽  
D. Dinakaran ◽  
Solomon G. Ravikumar ◽  
Sekar K.S. Vijay

The objective of this study is to evaluate the wear progression of cryogenically treated and untreated tungsten carbide inserts during face milling of Grey Cast Iron which is a commonly used material in machine tool beds and automotive components due to low cost, high vibration damping capability, and easiness of manufacturing. Commercially available uncoated Tungsten Carbide insert with around 6% Cobalt (Co) content were selected for the study and flank wear and nose wear were taken as the performance evaluation criteria. The results show that the cryogenically treated samples have better wear resistance than the untreated inserts which could be ascribed to the martensitic phase transformation of Co from α-Co (FCC) to ε-Co (HCP) during the cryogenic treatment.


2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Author(s):  
Siti Nazahiyah Rahmat ◽  
◽  
Algheethi Adel Ali Saeed Abduh ◽  
Ahmad Zurisman Mohd Ali ◽  
Mohd Adib Mohammad Razi ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 1016-1055 ◽  
Author(s):  
Philipp Adelhelm ◽  
Pascal Hartmann ◽  
Conrad L Bender ◽  
Martin Busche ◽  
Christine Eufinger ◽  
...  

Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.


2009 ◽  
Vol 404 (22) ◽  
pp. 4485-4488 ◽  
Author(s):  
B.N. Masina ◽  
A. Forbes ◽  
O.M. Ndwandwe ◽  
G. Hearne ◽  
B.W. Mwakikunga ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. 1-38
Author(s):  
Takayuki Fukatani ◽  
Hieu Hanh Le ◽  
Haruo Yokota

With the recent performance improvements in commodity hardware, low-cost commodity server-based storage has become a practical alternative to dedicated-storage appliances. Because of the high failure rate of commodity servers, data redundancy across multiple servers is required in a server-based storage system. However, the extra storage capacity for this redundancy significantly increases the system cost. Although erasure coding (EC) is a promising method to reduce the amount of redundant data, it requires distributing and encoding data among servers. There remains a need to reduce the performance impact of these processes involving much network traffic and processing overhead. Especially, the performance impact becomes significant for random-intensive applications. In this article, we propose a new lightweight redundancy control for server-based storage. Our proposed method uses a new local filesystem-based approach that avoids distributing data by adding data redundancy to locally stored user data. Our method switches the redundancy method of user data between replication and EC according to workloads to improve capacity efficiency while achieving higher performance. Our experiments show up to 230% better online-transaction-processing performance for our method compared with CephFS, a widely used alternative system. We also confirmed that our proposed method prevents unexpected performance degradation while achieving better capacity efficiency.


2021 ◽  
Author(s):  
Benjamin Butler ◽  
Justin Roberts ◽  
Matthew Kelsey ◽  
Steffen Van Der Veen

Abstract Multilateral wells have been proven over decades and have developed into a reliable and cost effective approach to mature field rejuvenation and extended commercial viability. This paper will discuss case studies demonstrating a number of techniques used to create infill multilateral wells in existing fields with a high level of reliability and repeatability. Techniques reviewed will cover cutting and pulling production casing to drill and case a new mainbore versus sidetracking and adding laterals to an existing mainbore. Discussion will also cover completion designs that tie new laterals into existing production casing providing significantly greater reservoir contact. Temporary isolation of high water-cut laterals brought into production later in the well's life through bespoke completion designs will also be discussed. Case studies will include discussion of workover operations, isolation methods, and lateral creation systems. Where available, resulting field performance improvements will also be discussed. In Norway, slot recoveries are commonly performed by cutting and pulling the 10-3/4" casing, redrilling a new mainbore, and running new casing. This enables junction placement closer to unswept zones and easier lateral drilling to targets. It does have drawbacks, however, related to the additional time required to pull the subsea xmas tree and challenges associated with pulling casing. In 2019, Norway successfully completed a 10-3/4" retrofit installation, whereas a sidetrack was made from the 10-3/4" and an 8-5/8" expandable liner was run down into the reservoir pay zone where two new laterals were created. The 8-5/8" liner saved time otherwise spent having to drill the section down to the payzone from the laterals. These wells have a TAML Level 5 isolated junction, Autonomous Inflow Control Devices (AICDs) in each lateral, and an intelligent completion interface across the junction, enabling active flow management and monitoring of both branches. In Asia, infill laterals were added to existing wellbores by sidetracking 9-5/8" casing and tying production back to the original mainbore. These dual laterals were completed with intelligent completions to enable lateral flow management and monitoring of both laterals. In Australia, dual laterals were created in a similar fashion; laterals are added to existing wells; however, a novel approach was used to manage water from existing lower mainbore laterals whereby they are shut in at completion and opened later when the new lateral is watered out. The older lateral now produces at lower water cut given the time allowed for water coning in the lateral to relax. Using this practice, production is alternated back and forth between the two laterals. In the Middle East, an older well has been converted from TAML Level 4 to Level 5 in order to prevent detected gas migrating into the mainbore at the junction. This conversion of a cemented junction well has enabled production to resume on this well. The well was converted to incorporate an intelligent completion to enable flow control of each lateral. This paper intends to provide insights into the various mature field re-entry methods for multilateral well construction, and a review of the current technology capabilities and well designs through the review of multiple case histories.


Sign in / Sign up

Export Citation Format

Share Document