Lightweight Dynamic Redundancy Control with Adaptive Encoding for Server-based Storage

2021 ◽  
Vol 17 (4) ◽  
pp. 1-38
Author(s):  
Takayuki Fukatani ◽  
Hieu Hanh Le ◽  
Haruo Yokota

With the recent performance improvements in commodity hardware, low-cost commodity server-based storage has become a practical alternative to dedicated-storage appliances. Because of the high failure rate of commodity servers, data redundancy across multiple servers is required in a server-based storage system. However, the extra storage capacity for this redundancy significantly increases the system cost. Although erasure coding (EC) is a promising method to reduce the amount of redundant data, it requires distributing and encoding data among servers. There remains a need to reduce the performance impact of these processes involving much network traffic and processing overhead. Especially, the performance impact becomes significant for random-intensive applications. In this article, we propose a new lightweight redundancy control for server-based storage. Our proposed method uses a new local filesystem-based approach that avoids distributing data by adding data redundancy to locally stored user data. Our method switches the redundancy method of user data between replication and EC according to workloads to improve capacity efficiency while achieving higher performance. Our experiments show up to 230% better online-transaction-processing performance for our method compared with CephFS, a widely used alternative system. We also confirmed that our proposed method prevents unexpected performance degradation while achieving better capacity efficiency.

2003 ◽  
Vol 3 (4) ◽  
pp. 169-175 ◽  
Author(s):  
S. Barbagallo ◽  
F. Brissaud ◽  
G.L. Cirelli ◽  
S. Consoli ◽  
P. Xu

In arid and semiarid regions the reclamation and reuse of municipal wastewater can play a strategic role in alleviating water resources shortages. Public awareness is growing about the need to recycle and reuse water for increasing supply availability. Many wastewater reuse projects have been put in operation in European and Mediterranean countries adopting extensive treatment systems such as aquifer recharge, lagooning, constructed wetlands, and storage reservoirs, mainly for landscape and agricultural irrigation. In agricultural reuse systems, there is an increasing interest in extensive technologies because of their high reliability, and easy and low cost operation and maintenance. Wastewater storage reservoirs have become the option selected in many countries because of the advantages they present in comparison with other treatment alternatives, namely the coupling of two purposes, stabilization and seasonal regulation. This paper describes an example of a wastewater storage system, built in Caltagirone (Sicily, Italy). The storage results in a tertiary treatment of a continuous inlet flow of activated sludge effluents. The prediction of the microbiological water quality has been evaluated by means of a non-steady-state first-order kinetic model. Single and multiple regressions were applied to determine the main variables that most significantly affected die-off coefficients. The proposed model has been calibrated using the results of a field monitoring carried out during a period from March to October 2000.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1202
Author(s):  
Miguel Tradacete ◽  
Carlos Santos ◽  
José A. Jiménez ◽  
Fco Javier Rodríguez ◽  
Pedro Martín ◽  
...  

This paper describes a practical approach to the transformation of Base Transceiver Stations (BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS) is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-critical load-shedding. The EMS collects data such as real-time energy consumption and generation, and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing strategy whereby measurements can be recorded and computing can be performed both locally and in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can be applied to both new and existing installations, providing a two-way connection to the electricity grid, PV generation, smart measurement systems and the necessary management software. All these functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is validated through real tests carried out on a pilot plant and under different weather conditions.


2015 ◽  
Vol 6 ◽  
pp. 1016-1055 ◽  
Author(s):  
Philipp Adelhelm ◽  
Pascal Hartmann ◽  
Conrad L Bender ◽  
Martin Busche ◽  
Christine Eufinger ◽  
...  

Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.


2021 ◽  
Author(s):  
Min Li ◽  
Junbiao Dai ◽  
Qingshan Jiang ◽  
Yang Wang

Abstract Current research on DNA storage usually focuses on the improvement of storage density with reduced gene synthesis cost by developing effective encoding and decoding schemes while lacking the consideration on the uncertainty in ultra long-term data storage and retention. Consequently, the current DNA storage systems are often not self-containment, implying that they have to resort to external tools for the restoration of the stored gene data. This may result in high risks in data loss since the required tools might not be available due to the high uncertainty in far future. To address this issue, we propose in this paper a self-contained DNA storage system that can make self-explanatory to its stored data without relying on any external tools. To this end, we design a specific DNA file format whereby a separate storage scheme is developed to reduce the data redundancy while an effective indexing is designed for random read operations to the stored data file. We verified through experimental data that the proposed self-contained and self-explanatory method can not only get rid of the reliance on external tools for data restoration but also minimize the data redundancy brought about when the amount of data to be stored reaches a certain scale.


Author(s):  
Murat Koseoglu ◽  
Furkan Nur Deniz ◽  
Baris Baykant Alagoz ◽  
Ali Yuce ◽  
Nusret Tan

Abstract Analog circuit realization of fractional order (FO) elements is a significant step for the industrialization of FO control systems because of enabling a low-cost, electric circuit realization by means of standard industrial electronics components. This study demonstrates an effective operational amplifier-based analog circuit realization of approximate FO integral elements for industrial electronics. To this end, approximate transfer function models of FO integral elements, which are calculated by using Matsuda’s approximation method, are decomposed into the sum of low-pass filter forms according to the partial fraction expansion. Each partial fraction term is implemented by using low-pass filters and amplifier circuits, and these circuits are combined with a summing amplifier to compose the approximate FO integral circuits. Widely used low-cost industrial electronics components, which are LF347N opamps, resistor and capacitor components, are used to achieve a discrete, easy-to-build analog realization of the approximate FO integral elements. The performance of designed circuit is compared with performance of Krishna’s FO circuit design and performance improvements are shown. The study presents design, performance validation and experimental verification of this straightforward approximate FO integral realization method.


Author(s):  
Xiang Long Huang ◽  
Yunxiao Wang ◽  
Shulei Chou ◽  
Shi Xue Dou ◽  
Zhiming M. Wang

Room-temperature sodium-sulfur (RT Na-S) batteries constitute an extremely competitive electrochemical energy storage system, owing to their abundant natural resources, low cost, and outstanding energy density, which could potentially overcome the...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Philipp L. Antkowiak ◽  
Jory Lietard ◽  
Mohammad Zalbagi Darestani ◽  
Mark M. Somoza ◽  
Wendelin J. Stark ◽  
...  

Abstract Due to its longevity and enormous information density, DNA is an attractive medium for archival storage. The current hamstring of DNA data storage systems—both in cost and speed—is synthesis. The key idea for breaking this bottleneck pursued in this work is to move beyond the low-error and expensive synthesis employed almost exclusively in today’s systems, towards cheaper, potentially faster, but high-error synthesis technologies. Here, we demonstrate a DNA storage system that relies on massively parallel light-directed synthesis, which is considerably cheaper than conventional solid-phase synthesis. However, this technology has a high sequence error rate when optimized for speed. We demonstrate that even in this high-error regime, reliable storage of information is possible, by developing a pipeline of algorithms for encoding and reconstruction of the information. In our experiments, we store a file containing sheet music of Mozart, and show perfect data recovery from low synthesis fidelity DNA.


Author(s):  
Inri Rodriguez ◽  
Jesus Cerda ◽  
Daniel S. Codd

A prototype water-glycerol two tank storage system was designed to simulate the fluidic properties of a high temperature molten salt system while allowing for room temperature testing of a low cost, small scale pneumatically pumped thermal storage system for use in concentrated solar power (CSP) applications. Pressurized air is metered into a primary heat transfer fluid (HTF) storage tank; the airflow displaces the HTF through a 3D printed prototype thermoplate receiver and into a secondary storage tank to be dispatched in order to drive a heat engine during peak demand times. A microcontroller was programmed to use pulse-width modulation (PWM) to regulate air flow via an air solenoid. At a constant frequency of 10Hz, it was found that the lowest pressure drops and the slowest flowrates across the receiver occurred at low duty cycles of 15% and 20% and low inlet air pressures of 124 and 207 kPa. However, the data also suggested the possibility of slug flow. Replacement equipment and design modifications are suggested for further analysis and high temperature experiments. Nevertheless, testing demonstrated the feasibility of pneumatic pumping for small systems.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3612 ◽  
Author(s):  
Algimantas Venčkauskas ◽  
Nerijus Morkevicius ◽  
Vaidas Jukavičius ◽  
Robertas Damaševičius ◽  
Jevgenijus Toldinas ◽  
...  

Development of the Internet of Things (IoT) opens many new challenges. As IoT devices are getting smaller and smaller, the problems of so-called “constrained devices” arise. The traditional Internet protocols are not very well suited for constrained devices comprising localized network nodes with tens of devices primarily communicating with each other (e.g., various sensors in Body Area Network communicating with each other). These devices have very limited memory, processing, and power resources, so traditional security protocols and architectures also do not fit well. To address these challenges the Fog computing paradigm is used in which all constrained devices, or Edge nodes, primarily communicate only with less-constrained Fog node device, which collects all data, processes it and communicates with the outside world. We present a new lightweight secure self-authenticable transfer protocol (SSATP) for communications between Edge nodes and Fog nodes. The primary target of the proposed protocol is to use it as a secure transport for CoAP (Constrained Application Protocol) in place of UDP (User Datagram Protocol) and DTLS (Datagram Transport Layer Security), which are traditional choices in this scenario. SSATP uses modified header fields of standard UDP packets to transfer additional protocol handling and data flow management information as well as user data authentication information. The optional redundant data may be used to provide increased resistance to data losses when protocol is used in unreliable networks. The results of experiments presented in this paper show that SSATP is a better choice than UDP with DTLS in the cases, where the CoAP block transfer mode is used and/or in lossy networks.


Sign in / Sign up

Export Citation Format

Share Document