Analysis of Vibrating Micropolar Plate in Contact With a Fluid

Author(s):  
A. Najafi ◽  
F. Daneshmand ◽  
S. R. Mohebpour

Micropolar theory constitutes extension of the classical field theories. It is based on the idea that every particles of the material can make both micro rotation and volumetric micro elongation in addition to the bulk deformation. Since this theory includes the effects of micro structure which could affect the overall behaviour of the medium, it reflects the physical realities much better than the classical theory for the engineering materials. In the micropolar theory, the material points are considered to possess orientations. A material point carrying three rigid directors introduces one extra degree of freedom over the classical theory. This is because in micropolar continuum, a point is endowed with three rigid directors only. A material point is then equipped with the degrees of freedom for rigid rotations, in addition to the classical translational degrees of freedom. In fact, the micropolar covers the results of the classical continuum mechanics. The micropolar theory recently takes attentions in fluid mechanics and mathematicians and engineers are implementing this theory in various theoretical and practical applications. In this paper the fluid-structure analysis of a vibrating micropolar plate in contact with a fluid is considered. The fluid is contained in a cube which all faces except for one of the lateral faces are rigid. The only non-rigid lateral face is made of a flexible micropolar plate and therefore, interacts with the fluid. An analytical approach is utilized to investigate the vibration characteristics of the aforementioned fluid-structure problem. The fluid is non-viscous and incompressible. Duplicate Chebyshev series, multiplied by boundary functions are used as admissible functions and the frequency equations of the micropolar plate are obtained by the use of Chebyshev-Ritz method. Also the vibration analysis of the plates modeled by micropolar theory has been done. This analysis shows that some additional frequencies due to the micropolarity of the plate appears among the values of the frequencies obtained in the classical theory of elasticity, as expected. These new frequencies are called micro-rotational waves. We also observed that when the micropolar material constants vanish, these additional frequencies disappear and only the classical frequencies remain. Specially, we observed that these additional frequencies are more sensitive to the change of the micro elastic constants than the classical frequencies. The frequencies and mode shapes of the coupled fluid structure interaction problem are obtained in the present study based on the micropolar and classical modeling. The numerical results for the problem are compared with those obtained by the analytical method for their differences and to confirm the proposed method. The microrotatinal wave frequencies and mode shapes are also developed. The results show that the natural frequencies and mode shapes for the transverse vibrations of the problem are in good agreement with the classical one and our knowledge from the physical nature of the problem.

2021 ◽  
Author(s):  
Olga Hachay ◽  
Andrey Khachay

<p>In recent years, new models of continuum mechanics, generalizing the classical theory of elasticity, have been intensively developed. These models are used to describe composite and statistically heterogeneous media, new structural materials, as well as in complex massifs in mine conditions. The paper presents an algorithm for the propagation of longitudinal acoustic waves in the framework of active well monitoring of elastic layered block media with inclusions of hierarchical type of L-th rank. Relations for internal stresses and strains for each hierarchical rank are obtained, which constitute the non local theory of elasticity. The essential differences between the non local theory of elasticity and the classical one and the connection between them are investigated. A characteristic feature of the theory of media with a hierarchical structure is the presence of scale parameters in explicit or implicit form. This work focuses on the study of the effects of non locality and internal degrees of freedom, reflected in internal stresses, which are not described by the classical theory of elasticity and which can be potential precursors of the development of a catastrophic process in a rock massif. Thanks to the use of a model of a layered block medium with hierarchical inclusions, it is possible, using borehole acoustic monitoring, to determine the position of the highest values ​​of internal stresses and, with less effort, to implement the method of unloading the rock massif. If it is necessary to conduct short-term predictive monitoring of geodynamic regions and determine a more accurate position of the source of a dynamic phenomenon using borehole active acoustic observations, it is necessary to use the values ​​of the tensor of internal hierarchical stresses as a monitored parameter.</p>


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Chi-Chang Lin ◽  
Ging-Long Lin ◽  
Kun-Shu Hsieh

Measuring responses at all degrees of freedom (DOF) of a real structure is impossible and impractical when few sensors are available. This study presents a damage-assessment technique for seismically excited buildings using only a few floor-response measurements. In the first step, the system realization using information matrix (SRIM) identification technique was applied to estimate such modal properties as frequencies and damping ratios of an instrumented building. However, the complete mode shapes cannot be acquired due to a lack of comprehensive measurements. A novel optimal mode-shape-recovery (OMSR) technique was applied to reconstruct the complete first mode shape of the building system. An optimization process was then applied to minimize a prescribed objective function that represents the difference between measured and estimated outputs at instrumented locations. A story damage index (SDI) computed using the first mode shape recovered was applied to determine the degree of story damage. Noisy floor measurements of a five-story shear building under earthquake excitation were utilized for numerical verification. Moreover, a three-story benchmark building was analyzed to assess the accuracy and applicability of the proposed OMSR technique via experimental data. The proposed method obtained results in fairly good agreement with those of full measurements and is of value in practical application. The damage-assessment results obtained with the proposed method agree well with the actual damage, demonstrating that the proposed method is suitable for practical applications.


2002 ◽  
Vol 9 (4-5) ◽  
pp. 155-164 ◽  
Author(s):  
Marcos Arndt ◽  
Roberto Dalledone Machado ◽  
Mildred Ballin Hecke

This paper introduces a new type of Finite Element Method (FEM), called Composite Element Method (CEM). The CEM was developed by combining the versatility of the FEM and the high accuracy of closed form solutions from the classical analytical theory. Analytical solutions, which fulfil some special boundary conditions, are added to FEM shape functions forming a new group of shape functions. CEM results can be improved using two types of approach: h-version and c-version. The h-version, as in FEM, is the refinement of the element mesh. On the other hand, in the c-version there is an increase of degrees of freedom related to the classical theory (c-dof). The application of CEM in vibration analysis is thus investigated and a rod element is developed. Some samples which present frequencies and vibration mode shapes obtained by CEM are compared to those obtained by FEM and by the classical theory. The numerical results show that CEM is more accurate than FEM for the same number of total degrees of freedom employed. It is observed in the examples that the c-version of CEM leads to a super convergent solution.


2011 ◽  
Vol 52-54 ◽  
pp. 1757-1761
Author(s):  
Jin Xing Lai ◽  
Qian Zhang

Energy equivalent modulus medium of entrainment multiphase composite body is one of main methods, Those methods study frangible materials damage in micromechanics. Through studying the physical and mechanical process of microstructure varity, we can introduce some kind averaging method to find the material’s macroscopic property. It has not been studied as yet that we study entrainment composite body’s damage trough introducing continous field variable of every exponent tensor from macrophenomenology angle. This paper regards entrainment multiphase composite body as the micropolar medium of introducing inner structure. It provides analytic formula to describe equivalent modus of entrainment multiphase composite body damage, through the stress in micropolar theory of elasticity,couple-stresses tensor and Helmhoetz degrees of freedom density.


1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


Author(s):  
Sridhar Kota ◽  
Srinivas Bidare

Abstract A two-degree-of-freedom differential system has been known for a long time and is widely used in automotive drive systems. Although higher degree-of-freedom differential systems have been developed in the past based on the well-known standard differential, the number of degrees-of-freedom has been severely restricted to 2n. Using a standard differential mechanism and simple epicyclic gear trains as differential building blocks, we have developed novel whiffletree-like differential systems that can provide n-degrees of freedom, where n is any integer greater than two. Symbolic notation for representing these novel differentials is also presented. This paper presents a systematic method of deriving multi-degree-of-freedom differential systems, a three and four output differential systems and some of their practical applications.


Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an isotropic, elastic annular disk constrained at some points on the inner and outer boundaries are investigated. The presented study is relevant to various practical problems including disks clamped by bolts along the inner and outer edges or the railway wheel vibrations. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. The boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to realize clamped conditions at discrete points. The frequency parameters for different point constraint conditions are evaluated and compared with those computed from a finite element model to demonstrate the validity of the proposed method. The computed mode shapes are presented for a disk with different point constraints at the inner and outer boundaries to demonstrate the free in-plane vibration behavior of the disk. Results show that addition of point supports causes some of the modes to split into two different frequencies with different mode shapes. The effects of different orientations of multiple point supports on the frequency parameters and mode shapes are also discussed.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


Sign in / Sign up

Export Citation Format

Share Document