Vortex Induced Vibration Tests of Smooth and Rough Flexible Cylinders at High Reynolds Numbers

Author(s):  
Don W. Allen ◽  
Dean L. Henning ◽  
Li Lee

Vortex-induced vibration (VIV) tests have been performed on long, flexible pipes with various levels of roughness, in sheared flows in a circular towing tank at high Reynolds numbers. The test pipes, made of fiberglass composite, were mounted horizontally beneath a rotating arm that has a span of 129 ft, and a width of 25 ft. As the towing bridge rotates, it drives the cylinder in a circular path in still water. The sheared flows experienced by the cylinder excite its VIV motion. The Reynolds numbers for the tests reported herein ranged from 152,000 to 339,000 at the high-speed end of the pipe. Two surface roughness levels were tested: one comprised of the exterior surface of a filament wound fiberglass pipe; and one with carpet glued to the exterior of the pipe. The VIV responses of the test cylinders, represented by displacement time traces, spectrum, and motion trajectories, are presented in this paper. Effects of the surface roughness and Reynolds numbers on the VIV responses are discussed. The response behavior of the cylinders varied from single-mode dominance to multi-mode responses, in addition to certain traveling wave activities. These results should be of interest to researchers and engineers in the area of vortex-induced vibrations.

Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


1993 ◽  
Vol 115 (1) ◽  
pp. 31-39 ◽  
Author(s):  
J. R. Chaplin

Measurements of pressures around a circular cylinder with fine surface roughness in planar oscillatory flow reveal considerable changes in drag and inertia coefficients over the Reynolds number range 2.5 × 105 to 7.5 × 105, and at Keulegan-Carpenter numbers between 5 and 25. In most respects, these results are shown to be compatible with previous measurements in planar oscillatory flow, and with previous measurements in which the same 0.5-m-dia cylinder was tested in waves.


2015 ◽  
Author(s):  
Don W. Allen ◽  
Li Lee ◽  
Dean Henning ◽  
Stergios Liapis

Most deepwater tubulars experiencing high currents frequently require vortex-induced vibration (VIV) suppression to maintain an acceptable fatigue life. Helical strakes and fairings are the most popular types of VIV suppression devices in use today. It is quite common to use only one type of device (helical strakes or fairings) on a single tubular and, in fact, to use a single device type on an entire tubular array. The use of both styles of suppression devices on a single tubular has grown in popularity, but mixing them within an array is a relatively new concept. It is sometimes desirable to use one suppression device on one tubular and another suppression device on an adjacent or tandem tubular. This paper utilizes results from two different types of VIV experiments. The first consists of a long tubular at high Reynolds numbers with VIV suppression on the outer end where current speeds are the highest. The use of only fairings, only strakes, or a mixture of the two devices is examined. The second VIV experiment examines the use of helical strakes on one tubular and fairings on a tandem tubular. Results are compared to experiments with either helical strakes on both tubulars or fairings on both tubulars. This paper is intended to provide some direction, and in many cases assurance, for mixing helical strakes and fairings on deepwater tubulars.


Sign in / Sign up

Export Citation Format

Share Document