Experimental Investigation on Effective Bulk Modulus and Effective Volume in an External Gear Pump

Author(s):  
Shuichi Nakagawa ◽  
Takayoshi Ichiyanagi ◽  
Takao Nishiumi

Pressure ripples generated by a positive displacement pump in a hydraulic system can lead to severe noise and vibration problems. The source impedance of a positive displacement pump has a considerable impact on the generation of pressure ripples. It is, therefore, important to be able to predict the source impedance in order to design quiet hydraulic systems. The source impedance of a positive displacement pump depends, amongst other things, on bulk modulus and volume. However, it is known that the mathematical model that takes into account the bulk modulus of hydraulic oil and the volume of a discharge room in the pump results in an estimated value of the source impedance that is greater than the measured value. In this study, the factors which affect the source impedance of an external gear pump for an agricultural tractor have been investigated. In particular, the effect of the following factors has been investigated experimentally: the effective bulk modulus as determined by the components of the pump: leakage in the pump: the specific volume ratio of entrained air to hydraulic oil: and the volume of the tooth space of the pump. In addition, the effect of volumetric change of the discharge room by pumping action has been investigated using CFD with moving mesh technique.

Author(s):  
Hossein Gholizadeh ◽  
Doug Bitner ◽  
Richard Burton ◽  
Greg Schoenau

It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air are not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution, and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models, and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.


Author(s):  
S. A. Gadsden ◽  
S. Habibi

This paper proposes a novel form of impedance control in order to reduce the effects of aerodynamic flutter on a flight surface actuator. The forces generated by small amplitude flutter were studied on an electrohydrostatic actuator (EHA). The effects of flutter were modeled and analyzed. Through analysis, it was found that in EHA systems, two parameters would impact the response of flutter: damping (B) of the mechanical load, and the effective bulk modulus of the hydraulic oil (βe). These can be actively controlled as proposed here in order to provide variable impedance. The results of changing these variables are discussed and presented here.


Author(s):  
D N Johnston ◽  
J E Drew

The secondary source method forms the British Standard for pump fluid-borne noise testing. This is a powerful technique but requires care in order to produce accurate results. This paper describes practical aspects for implementing the method. The requirements for the test rig, data acquisition system and analysis are detailed. The British Standard specifies that either mathematical modelling or linear interpolation is used on the source impedance measurements. A method for smoothing the impedance results is described in this paper, which is shown to give more repeatable results than linear interpolation. Some physically realistic mathematical models of pump impedance are described, and their use in determining the internal flow ripple discussed.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yan Wang ◽  
Tongsheng Shen ◽  
Chunsen Tan ◽  
Jian Fu ◽  
Shengrong Guo

AbstractHydraulic pumps are a positive displacement pump whose working principle causes inherent output flow pulsation. Flow pulsation produces pressure pulsation when encountering liquid resistance. Pressure pulsation spreads in the pipeline and causes vibration, noise, damage, and even pipeline rupture and major safety accidents. With the development of airborne hydraulic systems with high pressure, power, and flow rate, the hazards of vibration and noise caused by pressure pulsation are also amplified, severely restricting the application and development of hydraulic systems. In this review paper, the mechanism, harm, and suppression method of pressure pulsation in hydraulic systems are analyzed. Then, the classification and characteristics of pulsation attenuators according to different working principles are described. Furthermore, the critical technology of simulation design, matching method with airborne piston pumps, and preliminary design method of pulsation attenuators are proposed. Finally, the development trend of pulsation attenuators is prospected. This paper provides a reference for the research and application of pressure pulsation attenuators.


Author(s):  
Shuichi Nakagawa ◽  
Takayoshi Ichiyanagi ◽  
Takao Nishiumi

It is well known that hydraulic noise can change as a system warms up. That change can be a factor for misperception of mechanical failure, because noise can play an important role as a signal that indicates abnormal operation. It is therefore important to understand the behavior of hydraulic pressure ripples that are a source of hydraulic noise in operating conditions, and how they change in relation to the temperature of the hydraulic oil. This study has investigated the ripple behavior that results from temperature change in simple hydraulic systems, using mathematical models that took thermal properties into account. Physical properties of the oil and the speed of sound in the oil have been defined as temperature-related variables in the mathematical models. The physical properties that should be used in the mathematical models have been obtained directly from the oil manufacturer. In contrast, the speed of sound in the oil has to be obtained from the isentropic tangent bulk modulus of the oil in an actual operating condition. That has been determined from the specific volume ratio of entrained air to the oil and the isentropic tangent bulk modulus of the only oil. The thermal properties of the speed of sound in the oil have been determined from the thermal characteristics of these variables, and it has been found that the speed of sound in the oil decreases with a rise in the oil temperature. The mathematical models of pressure ripples have shown that there were three distinct phenomena resulting from the temperature change of the oil. The first is the change of wavelength. The second is the spatial dependence of the thermal characteristics of the pressure ripples. The third is the difference of the thermal characteristics of the pressure amplitude at the peak in spatial modes. These changes that result from the temperature variation tend to be large at higher frequency.


2016 ◽  
Vol 2016.91 (0) ◽  
pp. 133-136
Author(s):  
Shuichi NAKAGAWA ◽  
Takayoshi ICHIYANAGI ◽  
Takao NISHIUMI

1994 ◽  
Vol 116 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Yu Jinghong ◽  
Chen Zhaoneng ◽  
Lu Yuanzhang

The paper presents theoretical modeling and an experimental investigation of the variation of oil effective bulk modulus (βe) with pressure in hydraulic systems. A pressure sensitive model of βe and its several simplified forms have been derived. In addition, a method for parameter identification has been formulated. In an actual hydraulic system, values for βe at different load pressures were obtained, model parameters identified and modelling errors evaluated.


Author(s):  
Hossein Gholizadeh ◽  
Doug Bitner ◽  
Richard Burton ◽  
Greg Schoenau

It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air is not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.


Sign in / Sign up

Export Citation Format

Share Document