Combining CFD and Stress Models for PEM Cells: Initial Development

Author(s):  
Carlos Martinez-Baca ◽  
Rowland Travis

The aim of this work is to determine the relationship between the operational characteristics of a Polymer Electrolyte Membrane (PEM) fuel cell, and the relevant materials issues and in particular mechanical stresses that develop. A three dimensional, non-isothernal, single phase model of a single channel PEM fuel cell is developed to investigate the impact of temperature variation on the Membrane Electrode Assembly (MEA). The model accounts for heat transfer in solids as well as in the multi-component mixture of gases, convection and diffusion of different species in the porous electrodes and the channels, electrochemical reactions and transport of water and ions through the PEM. This model has been numerically implemented in a commercial Computational Fluid Dynamic (CFD), finite volume based code. Temperature contours derived from the model were then exported to a commercial Finite Element (FE) code to analyse the relevant mechanical issues of the PEM and in particular thermomechanical stresses that develop. Initial results verify that, even considering the polymer electrolyte membrane in isolation with mechanically free boundary conditions, there is a significant temperature difference leading to tensile stresses of up to 2.1 MPa within the membrane.

2017 ◽  
Vol 6 (2) ◽  
pp. 181 ◽  
Author(s):  
Kamaljyoti Talukdar

The present work consists of the modeling and analysis of solar photovoltaic panels integrated with electrolyzer bank and Polymer Electrolyte Membrane (PEM) fuel cell stacks for running different appliances of a hospital located in Kolkata for different climatic conditions. Electric power is generated by an array of solar photovoltaic modules. Excess energy after meeting the requirements of the hospital during peak sunshine hours is supplied to an electrolyzer bank to generate hydrogen gas, which is consumed by the PEM fuel cell stack to support the power requirement during the energy deficit hours. The study reveals that 875 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 with a 178.537 kW electrolyzer and 27 PEM fuel cell stacks, each of 382.372 W, can support the energy requirement of a 200 lights (100 W each), 4 pumps (2 kW each), 120 fans(65 W each) and 5 refrigerators (2 kW each)system operated for 16 hours, 2 hours,15 hours and 24 hours respectively. 123 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 is needed to run the gas compressor for storing hydrogen in the cylinder during sunshine hours.  Keywords: Central Electronics Limited, Electrolyzer, PEM, PM 150, Solar photovoltaic. Article History: Received Feb 5th 2017; Received in revised form June 2nd 2017; Accepted June 28th 2017; Available onlineHow to Cite This Article: Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata,India. International Journal of Renewable Energy Develeopment, 6(2), 181-191.https://dx.doi.org/10.14710/ijred.6.2.181-191


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2499
Author(s):  
Akira Nishimura ◽  
Tatsuya Okado ◽  
Yuya Kojima ◽  
Masafumi Hirota ◽  
Eric Hu

The impact of micro porous layer (MPL) with various thicknesses of polymer electrolyte membrane (PEM) on heat and mass transfer characteristics, as well as power generation performance of Polymer Electrolyte Fuel Cell (PEFC), is investigated. The in-plane temperature distribution on cathode separator back is also measured by thermocamera. It has been found that the power generation performance is improved by the addition of MPL, especially at higher current density condition irrespective of initial temperature of cell (Tini) and relative humidity condition. However, the improvement is not obvious when the thin PEM (Nafion NRE-211; thickness of 25 μm) is used. The increase in temperature from inlet to outlet without MPL is large compared to that with MPL when using thick PEM, while the difference between without MPL and with MPL is small when using thin PEM. It has been confirmed that the addition of MPL is effective for the improvement of power generation performance of single PEFC operated at higher temperatures than normal. However, the in-plane temperature distribution with MPL is not even.


Sign in / Sign up

Export Citation Format

Share Document