Effect of Fuel Cell Operation Pressure on the Optimization of a Hybrid System SOFC/Turbine for Cogeneration

Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

A solid oxide fuel cell (SOFC) integrated in a hybrid system with a gas turbine can achieve lower heating value (LHV) power of efficiencies of about 70%. Given the high operating temperature of the SOFC, it produces high grade heat, and a hybrid system designed for cogeneration may achieve total LHV efficiencies of 78% of 80% without post combustion and 85%–88% with post combustion. The present paper illustrates the optimum integration of a tubular solid oxide fuel cell in a cogeneration cycle with a multiple pressure heat recovery steam generator (HRSG) and a back pressure steam turbine. We considered fuel cells of 7.5 MW, 9 MW, 15 MW, 15 MW, 18 MW, 22.5 MW and 27 MW by scaling up published data for a 1.2 MW tubular solid oxide fuel cell. The operating pressures were 3 and 9atm. We used GateCycle™ heat balance software by GE Enter Software, LLC, to design a 20–40 MW high efficiency cogeneration plant. We performed a calculation of the heat balance of the fuel cell stack in Microsoft® Excel and then we imported the results into GateCycle™. We developed curves showing LHV “electric” efficiency versus power for different ratios of “fuel cell-to-gas turbine size”. Pressurization has a positive impact on the fuel cell polarization curve leading to higher power output. The gain in electric power, however, is offset by the additional power requirement of the compressor at higher pressures. Our analysis shows that an optimum pressure of about 9 atmospheres results in an overall hybrid system power efficiency of about 70% and a LHV “cogeneration” efficiency of about 80%. In conclusion, high efficiencies are obtained by optimization of a hybrid system consisting of pressurized high temperature fuel cells with gas turbines and a steam turbine.

Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

High temperature fuel cells can be integrated in a hybrid cycle with a gas turbine and achieve lower heating value (LHV) efficiencies of about 70%. A hybrid cycle designed for cogeneration applications could lead to even higher LHV efficiencies such as 78% to 80% without post combustion and 85%–90% with post combustion. The purpose of the present paper is to optimize the integration of a high temperature fuel cell in a cogeneration cycle. We used Gatecycle™ heat balance software by GE Enter Software, LLC, to design a 20–80 MW high efficiency cogeneration plant. Since Gatecycle™ does not have an icon for the fuel cell, we calculated the heat balance for the fuel cell stack in Microsoft® Excel and we imported the results into Gatecycle™. We considered a 8.5 MW, a 17 MW and a 34 MW fuel cell by scaling up of the commercially available 3MW molten carbonate fuel cell (MCFC). Our goal was to evaluate the optimum ratio between the fuel cell size and gas turbine size using a family of curves we developed showing LHV “electric” efficiency versus power for different ratios of “fuel cell–to–gas turbines size”. Similar curves showing LHV “cogeneration” efficiency are also presented. In addition configurations with a back pressure steam turbine and with a condensing steam turbine are evaluated. The influence of steam generation pressure in the overall system efficiency is discussed, as well as the performance of the hybrid system for different temperatures (0°F–80°F) and elevations (0 ft–3000 ft). Our conclusion is that high temperature fuel cells in a hybrid configuration with gas turbines could be successfully integrated into a cogeneration plant to achieve very high efficiencies.


Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

High temperature fuel cells, such as molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) can be integrated in a hybrid cycle with a gas turbine and a steam turbine and achieve overall lower heating value (LHV) efficiencies of about 70%. A hybrid cycle designed for cogeneration or tri-generation applications could lead to even higher overall LHV efficiencies. Tri-generation is the combined generation of power, heat and cooling from the same fuel source. The purpose of the present paper is to compare the performance of a 20MW MCFC system and a 20MW tubular SOFC system and assess their potential to cogeneration and tri-generation applications. The system includes a fuel cell, a gas turbine, a multiple pressure heat recovery steam generator (HRSG), a steam turbine and an absorption chiller (for cooling). The systems were designed and sized using GatecycleTM heat balance software by GE Enter Software, LLC. In order to optimize each system we developed curves showing LHV “electric” and “cogeneration” efficiency versus power for different ratios of “MCFC and SOFC fuel cell-to-gas turbines size.” At atmospheric pressure and at 675°C (1247°F) the 20MW MCFC system achieves “electric” efficiency of 69.5%. The SOFC at the same pressure and at 980°C achieves 67.3% “electric” efficiency. The MCFC alone is more efficient (58%) than the SOFC alone (56%). However the SOFC produces more heat than the MCFC leading to slightly higher cogeneration and tri-generation efficiencies. Pressurized operation at 9atm boosts the performance of the SOFC system to higher efficiencies (70.5%). Pressurized operation is problematic for the MCFC due to increased cathode corrosion leading to cathode dissolution as well as sealant and interconnection problems. However we can pressurize the MCFC system independently of the fuel cell with the integration of a gas turbine with a compressor pressure ratio of 10 to 16. Thus we achieve efficiencies close to 69%. In conclusion SOFC is more efficiently integrated in a hybrid configuration with gas turbine and a steam turbine for trigeneration applications when pressurized. MCFC is more efficiently integrated at atmospheric and pressures below 6 atm.


2012 ◽  
Vol 138 (4) ◽  
pp. 205-214 ◽  
Author(s):  
Hsiao-Wei D. Chiang ◽  
Chih-Neng Hsu ◽  
Wu-Bin Huang ◽  
Chien-Hsiung Lee ◽  
Wei-Ping Huang ◽  
...  

2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


Author(s):  
Wei Jiang ◽  
Ruxian Fang ◽  
Jamil A. Khan ◽  
Roger A. Dougal

Fuel Cell is widely regarded as a potential alternative in the electric utility due to its distinct advantages of high energy conversion efficiency, low environmental impact and flexible uses of fuel types. In this paper we demonstrate the enhancement of thermal efficiency and power density of the power plant system by incorporating a hybrid cycle of Solid Oxide Fuel Cell (SOFC) and gas turbine with appropriate configurations. In this paper, a hybrid system composed of SOFC, gas turbine, compressor and high temperature heat exchanger is developed and simulated in the Virtual Test Bed (VTB) computational environment. The one-dimensional tubular SOFC model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The single cell is discretized using a finite volume method where all the governing equations are solved for each finite volume. Simulation results show that the SOFC-GT hybrid system could achieve a 70% total electrical efficiency (LHV) and an electrical power output of 853KW, around 30% of which is produced by the power turbine. Two conventional power plant systems, i.e. gas turbine recuperative cycle and pure Fuel Cell power cycle, are also simulated for the performance comparison to validate the improved performance of Fuel Cell/Gas Turbine hybrid system. Finally, the dynamic behavior of the hybrid system is presented and analyzed based on the system simulation.


2010 ◽  
Vol 171-172 ◽  
pp. 319-322
Author(s):  
Hong Bin Zhao ◽  
Xu Liu

The simulation and analyses of a “bottoming cycle” solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system at the standard atmospheric condition is presented in this paper. The fuel cell model used in this research work is based on a tubular Siemens–Westinghouse–type SOFC with 1.8MW capacity. Energy and exergy analyses of the whole system at fixed conditions are carried out. Then, comparisons of the exergy destruction and exergy efficiency of each component are also conducted to determine the potential capability of the hybrid system to generate power. Moreover, the effects of operating conditions including fuel flow rate and SOFC operating temperature on performances of the hybrid system are analyzed.


Sign in / Sign up

Export Citation Format

Share Document