On Modeling Multi-Component Diffusion Inside the Porous Anode of Solid Oxide Fuel Cells Using Fick’s Model

Author(s):  
Fatma N. Cayan ◽  
Suryanarayana R. Pakalapati ◽  
Francisco Elizalde-Blancas ◽  
Ismail Celik

Stefan-Maxwell Model (SMM) and simple Fick’s Model (FM) type of relations both including Knudsen diffusion for the calculation of species mole fraction distribution inside the porous anode of a solid oxide fuel cell (SOFC) were compared and it was found that at low current densities the models agree well but as current increases the differences also increase. Based on the findings an empirical correction is proposed for the effective diffusivity used in Fick’s Model. The corrected diffusivity coefficient gave better agreement with the Stefan-Maxwell model and even at higher current densities the error is less than 5%. This correction was implemented via a three-dimensional, in-house SOFC simulation code (DREAM-SOFC) which uses Fick’s Model type relations for diffusion flux calculations. The code also takes into account methane steam reforming (MSR) and water gas shift (WGS) reactions and the electrochemical oxidation of both H2 and CO. As an application, a SOFC button cell which is being tested at West Virginia University was simulated. The results with and without the proposed correction for effective diffusivity are compared.

Author(s):  
Qiuyang Chen ◽  
Jian Zhang ◽  
Qiuwang Wang ◽  
Min Zeng

The concentration gradient of fuel and oxidant gas is great in the plane normal to the solid oxide fuel cells (SOFC) three-phase-boundary (TPB) layer, especially in the porous electrode. We present a novel interconnector design, termed bilayer interconnector, for SOFC. It can distribute the fuel and air gas in the plane normal to the SOFC TPB layer. In this paper, we develop a 3D model to study the current density of the SOFC with conventional and novel bi-layer interconnectors. The numerical results show that the novel SOFC design Rib1 can slightly enhance the mass transfer in the porous anode and current density. The novel SOFC design Rib2 can improve the current density significantly under low electrical conductivity of interconnector.


2005 ◽  
Vol 2 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Eric S. Greene ◽  
Maria G. Medeiros ◽  
Wilson K. S. Chiu

A one-dimensional model of chemical and mass transport phenomena in the porous anode of a solid-oxide fuel cell, in which there is internal reforming of methane, is presented. Macroscopically averaged porous electrode theory is used to model the mass transfer that occurs in the anode. Linear kinetics at a constant temperature are used to model the reforming and shift reactions. Correlations based on the Damkohler number are created to relate anode structural parameters and thickness to a nondimensional electrochemical conversion rate and cell voltage. It is shown how these can be applied in order to assist the design of an anode.


2006 ◽  
Vol 972 ◽  
Author(s):  
Vladislav A Sadykov ◽  
Natalia V Mezentseva ◽  
Rimma v Bunina ◽  
Galina M Alikina ◽  
Anton I Lukashevich ◽  
...  

AbstractEffect of fluorite-like or perovskite-like complex oxide promoters and Pd on the performance of Ni/YSZ and Ni/ScSZ cermets in methane steam reforming or selective oxidation by O2 into syngas at short contact times was studied. Spatial uniformity of dopants distribution in composites was controlled by TEM combined with EDX, while the lattice oxygen mobility and reactivity was elucidated by CH4 and H2 TPR. Oxide promoters allow to operate even at stoichiometric H2O/CH4 ratio by suppressing coke deposition through modification of Ni surface, while doping by Pd ensures reasonable performance at moderate (∼550 °C) temperatures required for Intermediate–Temperature Solid Oxide Fuel Cells (IT SOFC).


Author(s):  
Fatma N. Cayan ◽  
Suryanarayana R. Pakalapati ◽  
Francisco Elizalde-Blancas ◽  
Ismail Celik

A new phenomenological one-dimensional model is formulated to simulate the typical degradation patterns observed in Solid Oxide Fuel Cell (SOFC) anodes due to coal syngas contaminants such as arsenic (As) and phosphorous (P). The model includes ordinary gas phase diffusion including Knudsen diffusion and surface diffusion within the anode and the adsorption reactions on the surface of the Ni-YSZ based anode. Model parameters such as reaction rate constants for the adsorption reactions are calibrated to match the degradation rates reported in the literature. Preliminary results from implementation of the model demonstrated that the deposition of the impurity on the Ni catalyst starts near the fuel channel/anode interface and slowly moves toward the active anode/electrolyte interface which is in good agreement with the experimental data. Parametric studies performed at different impurity concentrations, operating temperatures and current densities showed that the coverage rate increases with increasing temperature, impurity concentration and current density, as expected.


Author(s):  
Lin Liu ◽  
Gap-Yong Kim ◽  
Abhijit Chandra

A modified spray pyrolysis approach has been utilized to fabricate anode electrode of a Solid Oxide Fuel Cell (SOFC). It was designed to control the anode microstructure to achieve large triple phase boundaries (TPBs) and high gas diffusion capability, which are critical in enhancing the performance of a SOFC. Deposition of porous anode film of Nickel and Ce0.9Gd0.1O1.95 on dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out using the modified spray pyrolysis. Effects of precursor solution feed rates, precursor solution concentrations and deposition temperatures on the TPB formation and porosity were investigated. The composition of the deposited anode film was evaluated by energy dispersive X-ray spectroscopy (EDS). Scanning electron microscope (SEM) examinations revealed that the deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and the particle size of the anode film.


2006 ◽  
Vol 15 (4) ◽  
pp. 604-609 ◽  
Author(s):  
H. Weckmann ◽  
A. Syed ◽  
Z. Ilhan ◽  
J. Arnold

2009 ◽  
Vol 29 (5-6) ◽  
pp. 1106-1113 ◽  
Author(s):  
Yongping Yang ◽  
Xiaoze Du ◽  
Lijun Yang ◽  
Yuan Huang ◽  
Haizhen Xian

Sign in / Sign up

Export Citation Format

Share Document